• Title/Summary/Keyword: 수직역학모델

Search Result 107, Processing Time 0.022 seconds

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.

A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes (수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-517
    • /
    • 1995
  • A mechanistic model for forced convective transition boiling has been developed to predict transition boiling heat flux realistically. This model is based on a postulated multi­stage boiling process occurring during the passage time of an elongated vapor blanket specified at a critical heat flux condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling. The total heat transfer rate during the transition boiling is the sum of the heat transfer rates after the DNB weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. From these comparisons, it can be seen that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are nil predicted at low qualities/high pressures near 10 bar.

  • PDF

Analysis of Bone-Remodeling Process Using Quasi-molecular Dynamics (요추 추체의 골 -재형성에 대한 준분자 동력학적 접근 방법)

  • 김영은;최훈희
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.447-451
    • /
    • 2003
  • A new method for analyzing the bone-remodeling process using quasi-molecular dynamics was proposed in this study. The effect of pressure due to bone marrow, which could not be considered in previous methods, was also considered in this method. Bone-remodeling response of the 2D vertebral body of lumbar spine to a uniaxial compressive displacement of 1.8564mm. corresponding to approximately 2kN of compressive load, was studied. Converged shape change of the cortical shell and rearrangement of cancellous bone structure matched well with a normal shape of the vertebral body. The calculated responses in the spinal elements also shows closed results compared with experimental results.

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

Numerical Study for Influence of Crossdraft Directions and Magnitudes on Push-Pull Ventilation Systems (푸시풀 후드시스템의 방해기류 방향 및 세기의 영향에 관한 수치적 연구)

  • Li, Xiao Yu;Kim, Tae Hyeung;Piao, Cheng Xu;Ha, Hyun Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • 푸쉬-풀 환기시스템은 도금조와 같이 흡인해야 할 거리가 상대적으로 긴 경우에 많이 사용되고 있다. 그러나, 창문이나 출입문을 통한 방해기류가 푸쉬-풀 환기시스템의 오염물질 제어효율을 심각하게 훼손시키고 있다고 추측하고 있으나 이에 대한 세부적인 연구가 부족한 상태에 있다. 따라서, 본 연구에서는 전산유체역학(Computational fluid dynamics)을 이용하여 푸쉬-풀 환기시스템에서의 방해기류의 방향과 세기가 흡인효율에 어떠한 영향을 미치는지에 대해 평가해 보았다. 선형흡인효율(Linear capture efficiency) 방법을 이용하여 푸쉬-풀 환기시스템에서 가상의 개방조에서 발생한 오염물질이 푸쉬-풀 시스템에 의하여 포집되지 못하고 누출되는 구역이 어딘지를 찾아낼 수 있었다. 전산유체역학 컴퓨터시뮬레이션은 AIRPAK2.1 (FLUENT CODE) 소프트웨어를 사용하였다. 푸쉬-풀 후드시스템에 방해기류가 강하게 작용하면 상대적으로 강한 와류가 발생하는데, 일반적인 난류모델인 ${\kappa}-{\varepsilon}$모델은 와류현상을 충분히 보여주지 못한 반면에 RNG 모델을 사용했을 때 실험결과를 적절히 모사해낼 수 있었다. RNG 모델을 이용하여 세가지 방향, 즉 푸쉬에서 풀 방향으로, 풀에서 푸쉬 방향으로 그리고 그에 수직되는 방향으로 방해기류가 있을 때의 푸쉬-풀 환기시스템의 흡인효율을 분석하였다. 방해기류가 0.25m/s이하일 때에는 흡인효율이 거의 떨어지지 않았으나, 방해기류가 0.6m/s에서 흡인효율이 40-70%로 떨어짐을 알 수 있었다. 따라서, 방해기류를 감소시킬 수 있는 방안에 대해서도 연구를 해야 되겠지만, 방해기류 존재 하에서 충분한 흡인 효율을 유지할 수 있는 푸쉬-풀 후드 설계기준에 대한 연구도 필요할 것으로 판단된다.

Numerical Analysis of Rarefied Hypersonic Flows Using Generalized Hydrodynamic Models for Diatomic Gases (이원자 기체 일반유체역학 모델을 이용한 극초음속 희박 유동장 해석)

  • Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.32-40
    • /
    • 2002
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, computational models for diatomic gases are developed. The rotational nonequilibrium effect is included by introducing excess normal stress associated with the bulk viscosity of the gas. The new models are applied to study the one-dimensional shock structure and the multi-dimensional rarefied hypersonic flow about a blunt body. The results indicate that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. An excellent agreement with experiment is observed for the inverse shock density thickness.

Integrated Flight Simulation Program for Multicopter Drones by Using Acausal and Object-Oriented Language Modelica (비인과, 객체지향적 언어 모델리카를 이용한 멀티콥터형 드론의 통합 비행 시뮬레이션 프로그램)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.437-446
    • /
    • 2017
  • An integrated flight simulation program for multicopter drones is presented. The program includes rigid body dynamics, propeller thrust, battery energy, control, and air. Using this program, users can monitor and analyze the states of drones along flight trajectories. As a programming language, Modelica has been chosen, that specializes in simulation program development. Modelica enables users to develop simulation programs efficiently due to acausal and object oriented properties. For missions including horizontal and vertical maneuvers, many dynamical states of drones have been analyzed with simulation results.