• Title/Summary/Keyword: 수직반력

Search Result 59, Processing Time 0.049 seconds

Effects of visual selection and rotation order on take-off and landing during sequential rotational jumping (연속 회전점프 시 시각선택과 회전순서가 도약과 착지에 미치는 영향)

  • Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.701-709
    • /
    • 2022
  • The purpose of this study was to compare the differences according to the visual selection and rotation order during sequential rotational jump for female dancers of a Korean ballet company by classifying them into take-off and landing sections. 10 subjects (age: 26.0±2.9 yrs, height: 163.4±3.3 cm, weight: 46.8±3.6 kg, ballet career: 12.3±5.9 yrs) participated in the study. Using a 3D motion analyzer and a force platform, the height of the body center and the ground reaction force during take-off and landing were measured. According to the visual condition (using both eyes, using left eye, using right eye) and rotation order (first rotation, second rotation), it was analyzed through repeated measurement two-way analysis. Height of the CM was higher in the first jump. In take-off, Fx was lateral force of left foot and medial force of right foot were strong in second rotation, and Fy was forward force was strong in first rotation of right foot. Fz was no significant. In landing, Fy showed backward force was strong when landing the second time from the left foot, and the backward force was strong when using the left sight from the right foot. Fz was strong on the second landing on the left foot and the first landing on the right foot.

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump (몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향)

  • Kim, Yong-Woon;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2009
  • The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

Analysis of ground reaction force contributing to horizontal velocity factors in short distance 100M race (육상 단거리 100m 수평속도 요인에 기여하는 지면반력분석)

  • Choi, Su-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2134-2141
    • /
    • 2014
  • This study was to analyze ground reaction force according to Crouching Start type at the starting point of 100M race. The subjects of this study were 8 women sprinters and we analyzed their ground reaction force by classifying the distance between start blocks as three types. The followings are the results of the study. According to maximum horizontal ground reaction force analysis result, in the left foot placed in front, BS among excellent group and MS in non-excellent group showed the biggest reaction force value. In the right foot placed at the back, MS in both groups showed the biggest reaction force value. MS in the right foot of the excellent group was the biggest (0.83 BW). According to maximum vertical ground reaction force analysis result, in the left foot placed in front, ES among excellent group and BS in non-excellent group showed the biggest reaction force value. In the right foot placed at the back, BS among excellent group and MS in non-excellent group showed the biggest reaction force value.

Comparative Analysis of Muscle Activity and Ground Reaction Force between Skilled and Unskilled Player during a Free Throw (농구 자유투 동작 시 숙련자 및 미숙련자의 근전도 및 지면 반력 분석)

  • Gu, Hyung-Mo;Chae, Woen-Sik;Kang, Nyeon-Ju;Yoon, Chang-Jin;Jang, Jae-Ik
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.347-357
    • /
    • 2009
  • The purpose of this study was to compare EMG and GRF during a free throw. Seven pairs of surface electrodes were attached to the right-hand side of the body to monitor the flexor carpi radialis (FC), extensor carpi radialis longus (EC), biceps brachii (BB), triceps brachii (TB), rectus femoris (RF), tibialis anterior (TA) and medial gastrocnemius (GM). GRF data from two force platform were collected during a free throw. The results showed that the muscle activities in the unskilled group must be highly activated prior to the moment of release. This means that a skilled participant can shoot a free throw more efficiently while producing less muscle activeness than an unskilled participant. The DCP of unskilled group in the medio-lateral direction were greater than the corresponding values in skilled group. This showed that the unskilled group were not able to shoot the free throws stably. Thus, when a teacher or instructor teaches students how to shoot free throw, it is considered that the teacher show the learner how to use not only the upper limbs but also lower limbs on the basis of the efficent connecting movement and the flexibility in a stable procedure.

Biomechanics analysis by success and failure during golf putting swing (골프 퍼팅 스윙시 성공과 실패에 따른 운동역학적 분석)

  • Choi, Sung-Jin;Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.279-293
    • /
    • 2002
  • In the study the subjects who 10 university golfers act, and the kinetic factors were analyzed by the ground reaction system. the conclusion are as follows. 1) In the golf putting swing, the ground reaction factors of sagital plane in aspect are showen that the left and right foot sufficient difference, in the level of p <.05. 2) In the golf putting swing, the ground reaction factors of frontal plane in aspect is showen that the left foot has no significant difference in AD BS in the level of p < .05. In success, IP, FS. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 3) In the golf putting swing, the ground reaction factors of the vertical plane in aspect are shown that the left foot has no significant difference in BS, FS in the level p < .05. In success, AD, IP. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 4) In the golf putting swing, the ground reaction factors of torque in aspect are shown that the left foot had no significant difference in BS in the level p < .05. In success, AD, IP, FS. It can show significant difference. In addition, the right foot has no significant difference in IP in the level p < .05. AD, BS, FS. There is significant difference. The summarized conclusions are as follows. The first that the power of sagital plane needs the motion which can get the good power change in the stabilized pose. The second is that the small motion can make good putting in stabilized pose. The third is that the body weight move to the direction of the ball. The fourth is that the putting which looks perfect oscillation is good motion.

A Study of 3-Dimension Plate- Elastic Foundation Interaction Analysis by Finite Element Method (판과 탄성지반의 상호작용을 고려한 3차원 유한요소해석에 관한 연구)

  • 황창규;강재순
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 1992
  • This paper is a basic study of three by finite element method. Plate and medium. Plate is discretized 4 node p melt. At the interface between plate a melt is adopted for considering plate Measured vertical displacement out by plate foundation interaction finite zion is followed as ; 1. as being interface element adopts dation interaction finite element 2. As being interface element and platefoundation interaction finite 3. As being interface element adopte Therefore, post processing that as.

  • PDF

Optimum Alignment of Marine Propulsion Shafting (박용추진축계의 최적배치에 관한 연구)

  • 문덕홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.1
    • /
    • pp.39-46
    • /
    • 1982
  • The author has developed the computer program in order to calculate the optimum alignment condition of marine propulsion shafting by linear programming method. The input of program was calculated by the matrix method of three-moment. He compared the calculated values with the experimental values measured by the strain gage on the model shaft, and the values of calculation on actual propulsion shafting with those of Det norske Veritas. The computer program of optimum alignment has been applied to the actual shaft. The results obtained are as follows: 1. To obtain the reaction of supporting points in the straight line necessary to the optimum alignment and the reaction influence number, after the computer program had been developed and then adapted, the result of experimental values and calculated values agreed with each other and the values of the actual shaft were also approximately similar to the values of other program. 2. In this paper, the measuring method on model shaft by strain gage can be effectively used at the time of adjusting alignment condition of actual shaft. 3. The supporting bearing should be considerably readjusted to the vertical direction in order to satisfy some limited condition.

  • PDF

The Effects of Breathing Control on Kinetic Parameters of Lower Limbs during Walking Motion in Korean Dance (한국무용 걸음체 동작 시 호흡의 사용유무가 하지의 운동역학적 변인에 미치는 영향)

  • Park, Yang-Sun;Jang, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.627-636
    • /
    • 2009
  • This study aims to provide a scientific basis for the abstract beauty of dance by analyzing the effects of controlling the breath during the walking motion of Korean dance. The objective of the study is to determine the significance of breathing during Korean dance, as it is externally expressed and technologically segmented, let alone the internal beauty of Korean dance. The results of this study show that the position of the body center and ASIS during the walking motion that uses breath was lower than that of the walking motion that does not use the breath. In addition, in each replacement of the knee joint and ankle joint, a narrow angle, in which bending is used a lot, appeared during the walking motion that uses the breath, but not during the walking gesture that does not use the breath. This occurred during the bending motion. In the first peak point, the vertical ground reaction force during the walking motion that uses the breath was higher than that during the walking motion that does not use the breath.

Model Tests of Pile Groups in Sand (실내모형실험을 통한 군말뚝기초의 거동분석)

  • 정상훈;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.193-205
    • /
    • 2001
  • In this study the behavior of pile groups is investigated experimentally. Special attention is given to the load transfer characteristics of pile groups and to the evaluation of the group effects under vertical and horizontal loadings. In the laboratory experiments, vertical and lateral loadings were imposed on model piles in sand. Model piles made of PVC embedded in Joomoonjin sand were used in this study. Pile arrangements($2\times2,\; 3\times3$) and pile spacings(2.5D, 5.OD, 7.5D) were considered. Load-transfer curves(t-z, q-z and p-y curves), load-deflection curves and group interaction factors were obtained from the experimental results. The group interaction factors under both vertical and horizontal loadings were proposed for the cases of $2\times2\; and\; 3\times3$ pile groups with varying ratios of pile spacings. p-multipliers in this study were found for the individual piles in $2\times2\; and\; 3\times3$ pile groups.

  • PDF

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.