• Title/Summary/Keyword: 수직구속응력

Search Result 46, Processing Time 0.027 seconds

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

Effects of Transverse Cracks on Stress Distributions of Continuously Reinforced Concrete Tracks Subjected to Train Loads (연속철근 콘크리트궤도의 횡균열이 열차 하중에 의한 응력 분포에 미치는 영향)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.355-364
    • /
    • 2014
  • The restrained volume changes of concrete due to variations of temperature and moisture produce transverse cracks in continuously reinforced concrete tracks (CRCTs). Such cracks are known to significantly affect the behaviors and long-term performance of CRCT. To investigate the effects of the transverse cracks on the behavior of CRCT and to develop more reasonable maintenance standards for cracks, in this study, the stress distribution of the track concrete layers (TCL) and the hydraulically stabilized base course (HSB) with transverse cracks were numerically predicted by a three dimensional finite element analysis when CRCT was subjected to train loads. The results indicate that the bending stresses of TCL and vertical stresses at the interfaces between TCL and HSB increased as the cracks were deepened. In addition, vertical stresses were locally concentrated near reinforcing steel in cracks in TCL when full-depth cracks developed, which may lead to punch-outs in CRCTs. Comparably, the effects of crack width and spacing were not as significant as crack depth. This study indicates that ensuring the long-term performance of CRCTs requires adequate maintenance not only for crack width and spacing but also for crack depth. Our results also show that locating HSB joints between sleepers is beneficial to the long-term performance of CRCTs.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Development of a Practical Rutting Characterization Method for Bituminous Mixtures (아스팔트 콘크리트 혼합물의 소성변형시험 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The main objective of materials testing is to simulate in-situ field conditions as closely as possible, including loading conditions, climatic conditions, etc. Also, the test method should be easy, inexpensive, simple, and efficient to conduct to become an acceptable standard laboratory testing method for many agencies. Based on these reasons, a new test method employing repetitive axial loading with confinement was developed to evaluate the rutting(permanent deformation) of asphalt concrete. The new laboratory test protocol was developed based on the study of the various structural analysis and field data. This protocol divides asphalt layer(s) into three categories depending upon the depth. Different temperatures and vertical stress levels were used in these areas.

Fundamental Study for Vertical Fracturing Pressure of Impervious Soil (불투수성(不透水性) 지반(地盤)에서의 종할열주입압(縱割裂注入壓)에 관한 기초적(基礎的) 연구(硏究))

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.43-51
    • /
    • 1986
  • Triaxial compression tests were performed with control of vertical stress, confined pressure(${\sigma}_H$), and injection velocity by means of impervious soil samples with a different grain size, density and grout density. By measuring pore water pressure at the time of vertical fracturing around the bore-hole, relationships between main factors are described, and the factors are pore water pressure, confined pressure, vertical fracturing injection pressure(${\sigma}$) and the tension strength(${\sigma}_t$). The hydraulic fracturing of soft clay was occurred at the pressure which was less than the pressure obtained by the theory of elasticity. It was found that the above result was the influence of pore water pressure due to injection pressure($U_a$) and pore water pressure due to confined pressure($U_i$). Therefore, the vertical injection pressure at the time of fracturing needs to be changed as follows. $${\sigma}=2{\cdot}{{\sigma}_H}-(U_a+U_i)+{\sigma}_t$$.

  • PDF

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections (정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향)

  • Kim, Lyang-Woon;Chung, Chang-Yong;Lee, Soo-Kueon;Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.209-212
    • /
    • 2008
  • DBS method of underground works can reduce the term of works for manufacturing the underground members in factory and producing members in modularization, apart from that, the horizontal member could be used as permanent members, which are the advantages of this method. As the component element of DBS method, in order th transfer the vertical load on horizontal member to the column during the construction or in service, developed ${\sharp}$ shaped double beam-column connection is dominated by shear failure in the complicated state of multi-axial stresses. In this study, in order to check the shear-failure mechanism of ${\sharp}$ shaped connection of double beam-column and an increase of shear internal force with the thickness of the steel plate. 7 specimens were made and one-way static tests. All of the specimens were subjected to brittle failure. Constraint of slab will increase its shear strength by 1.06${\sim}$1.48 times. Shear strength of slabs with different constraints steel plate in two-way increase more than which are same. So the slab with different constraints steel plate will be more effective.

  • PDF