• 제목/요약/키워드: 수증기기 개질기

검색결과 129건 처리시간 0.028초

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발 (Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations)

  • 오윤석;이대훈;남진현
    • 신재생에너지
    • /
    • 제19권2호
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 효율적인 전산유체역학 해석모델 (Efficient Computational Fluid Dynamics Model for Microchannel-Type Steam/Methane Reformers with Nickel Washcoat Catalyst Layers Based on Effectiveness Factor Correlations)

  • 오윤석;정아름;남진현
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.749-760
    • /
    • 2022
  • An efficient computational fluid dynamics model was proposed for simulating microchannel-type steam/methane reformers with thin washcoat catalyst layers. In this model, by using the effectiveness factor correlations, the overall reaction rate that occurs in the washcoat catalyst layer could be accurately estimated without performing the detailed calculation of heat transfer, mass transfer, and reforming reactions therein. The accuracy of the proposed model was validated by solving a microchannel-type reformer, once by fully considering the complex steam/methane reforming (SMR) process inside the washcoat layer and again by simplifying the SMR calculation using the effectiveness factor correlations. Finally, parametric studies were conducted to investigate the effects of operating conditions on the SMR performance.

외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성 (A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers)

  • 이강훈;우현탁;이상민;이영덕;강상규;안국영;유상석
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.343-350
    • /
    • 2012
  • 본 연구에서는 외부 개질기에 열원을 공급하기 위한 시스템 내에 가용한 열에너지의 활용 및 확보에 대한 해석을 위해서 외부 개질기를 연계한 평판형 SOFC 시스템의 해석 모델을 구축하고자 한다. 이러한 해석을 위한 모델 구축을 위해 Matlab simulink$^{(R)}$ 기반의 ThermoLib module을 사용하였으며, 구축된 해석 모델을 통하여 시스템의 성능 향상을 위한 구성 기법에 대해서 연구를 하였다. 시스템 구성 방법은 기존 시스템의 layout을 바꾸기 위해 공기극 출구가스 재순환 및 외부개질기와 촉매연소기를 통합한 개질반응시스템 적용, 개질기에 공급되는 혼합연료의 예열, 연료극 출구가스의 응축을 통한 연료 농도 향상 등을 고려하였다. 시뮬레이션의 해석 결과에서는 SOFC 시스템에 있어서 일반 연소기를 적용한 기준 시스템에 비하여 촉매 연소기를 사용한 시스템의 전기 효율이 12.13% 향상되었으며, 연료극 출구 가스를 응축시켜 버너로 연소시킨 시스템에서는 열효율이 76.12%로 가장 높았다.

중온형 원통다관형 수증기 개질기의 부분단열 및 반경방향 분배 구조의 영향 (Partial Insulation and Heating Tubes Configuration of Shell and Tube Steam Reformer at Medium Temperature)

  • 박다인;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.618-626
    • /
    • 2017
  • Conventional high temperature reformers are not suitable for hybrid fuel cell systems that use waste heat as a heat source. So, development of a low temperature type reformer is needed. However, the analysis was conducted in two ways to increase the thermal efficiency, because of low reforming rate due to the low heat source. First, it is a way to ger thermal gain from the outside through partial insulation. In the case of one heat source tube and several heat source tubes, we analyzed the effect of partial heat insulation in some cases. Second, we found the most efficient arrangement of the heat source tubes by changing the location of the heat source tubes. The interpretation was carred out using the COMSOL Mutiphysics program.

3D 매트릭스 개질기를 활용한 모사 바이오가스 부분산화 및 수증기 영향 연구 (The Study of Effect of Steam on Partial Oxidation for Model Biogas using 3D Matrix Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.772-779
    • /
    • 2011
  • New type of syngas generator based on the partial oxidation of biogas in volumetric permeable matrix reformers was suggested as an effective, adaptable and relatively simple way of syngas and hydrogen production for various low-scale applications. The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. Parametric screening studies were achieved as air ratio, biogas component ratio, input gas temperature, Steam/Carbon ratio. As the air ratio was low, the production of the hydrogen and carbon monoxide increased in the condition that 3D matrix reformer maintains the stable driving. As it was the simulation biogas in which the carbon dioxide content is high, the flammable range became narrow. And the flammable range was extended if the injected gas was preheated. The stable driving was possible in the low air ratio. The amount of hydrogen production was increased as S/C ratio increased.

상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교 (Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst)

  • 김영상;이강훈;이동근;이영덕;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구 (Heat and mass transfer characteristics in steam reforming reactor)

  • 이신구;임성광;배중면
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF

고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구 (Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC)

  • 홍석주;임문섭;전영남
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.656-662
    • /
    • 2007
  • 고분자 전해질 연료전지 운전에 필요한 수소 공급 장치로서 플라즈마 개질 방법을 이용한 개질기와 일산화탄소 산화반응을 위한 전이 반응기를 설계 및 제작하였다. GlidArc 방전을 이용한 저온플라즈마 개질기는 Ni 촉매를 동시에 사용하여 $CH_4$ 개질함으로서 $H_2$ 선택도를 증대하였다. 개질기의 변수별 연구로서 촉매 온도, 가스 조성비, 전체 가스유량, 전압변화 그리고 개질 특성 및 최적 수소 생산조건을 연구하였으며, 전이반응기의 변수별 연구로서 선택적 산화반응기(PrOx)에 주입되는 공기량, 전이 반응기에 주입되는 수증기량 그리고 온도에 대하여 연구하였다. 플라즈마 개질기에서 최대 수소 생산 조건은 $O_2/C$ 비가 0.64, 가스유량은 14.2 l/min, 촉매 반응기 온도 $672^{\circ}C$ 그리고 유입전력이 1.1 kJ/L일 때 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때의 $CH_4$ 전환율, $H_2$ 수율 그리고 개질기 에너지 밀도는 각각 88.7%, 54%, 35.2%를 나타냈다. 전이 반응기에서 모사된 개질 가스로부터 최대 CO 전환율을 보이는 조건은 2단으로 구성된 PrOx에 주입되는 $O_2/C$ 비가 0.3, HTS에서 주입되는 수증기 주입량 비가 2.8 그리고 HTS, LTS, PrOx I, PrOx II 반응기 온도가 475, 314, 260, $235^{\circ}C$ 일때 가장 높은 CO 전환율을 나타냈다. 플라즈마를 이용한 반응기는 예열 시간은 30분이 소요되었으며, 전이 반응기에서 나오는 최종 개질 가스의 조성은 $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% 그리고 $CH_4$ 4%로 나타냈다.

수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구 (Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production)

  • 박준근;이신구;배중면;김명준
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.