• Title/Summary/Keyword: 수중 제어 시스템

Search Result 189, Processing Time 0.025 seconds

Development of Double Rotation C-Scanning System and Program for Under-Sodium Viewing of Sodium-Cooled Fast Reactor (소듐냉각고속로 소듐 내부 가시화를 위한 이중회전구동 C-스캔 시스템 및 프로그램 개발)

  • Joo, Young-Sang;Bae, Jin-Ho;Park, Chang-Gyu;Lee, Jae-Han;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • A double rotation C-scanning system and a software program Under-Sodium MultiVIEW have been developed for the under-sodium viewing of a reactor core and in-vessel structures of a sodium-cooled fast reactor KALIMER-600. Double rotation C-scanning system has been designed and manufactured by the reproduction of double rotation plug of a reactor head in KALIMER-600. Hardware system which consists of a double rotating scanner, ultrasonic waveguide sensors, a high power ultrasonic pulser-receiver, a scanner driving module and a multi channel A/D board have been constructed. The functions of scanner control, image mapping and signal processing of Under-Sodium MultiVIEW program have been implemented by using a LabVIEW graphical programming language. The performance of Under-Sodium MultiVIEW program was verified by a double rotation C-scanning test in water.

A Study on Development of Acoustic Tweezer System Using Standing Waves and Very High Frequency Focused Beams (정상파와 초고주파 집속 빔을 이용한 음향집게시스템의 개발에 관한 연구)

  • Yang, Jeong-Won;Ha, Kang-Lyeol;Kim, Moo-Joon;Lee, Jung-Woo;Shung, K.K.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.357-364
    • /
    • 2008
  • For the purpose of possibility study on development of an acoustic tweezer using standing waves and very high frequency ultrasound focused beams, a system which can manipulate the position of particles in water has been constructed. It can move the particles to near focal point of a focused beam by the radiation force of standing waves, and then the particles would be trapped by the radiating force of the focused beam. The results show that micro sphere particles were trapped well at nodes of the standing waves and their position can be easily manipulated by frequency control. And, even though the radiation force by single focused beam pushes a particle away from the transducer, two focused confronted beams can trap it at near center.

Vision-based Sensor Fusion of a Remotely Operated Vehicle for Underwater Structure Diagnostication (수중 구조물 진단용 원격 조종 로봇의 자세 제어를 위한 비전 기반 센서 융합)

  • Lee, Jae-Min;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Underwater robots generally show better performances for tasks than humans under certain underwater constraints such as. high pressure, limited light, etc. To properly diagnose in an underwater environment using remotely operated underwater vehicles, it is important to keep autonomously its own position and orientation in order to avoid additional control efforts. In this paper, we propose an efficient method to assist in the operation for the various disturbances of a remotely operated vehicle for the diagnosis of underwater structures. The conventional AHRS-based bearing estimation system did not work well due to incorrect measurements caused by the hard-iron effect when the robot is approaching a ferromagnetic structure. To overcome this drawback, we propose a sensor fusion algorithm with the camera and AHRS for estimating the pose of the ROV. However, the image information in the underwater environment is often unreliable and blurred by turbidity or suspended solids. Thus, we suggest an efficient method for fusing the vision sensor and the AHRS with a criterion which is the amount of blur in the image. To evaluate the amount of blur, we adopt two methods: one is the quantification of high frequency components using the power spectrum density analysis of 2D discrete Fourier transformed image, and the other is identifying the blur parameter based on cepstrum analysis. We evaluate the performance of the robustness of the visual odometry and blur estimation methods according to the change of light and distance. We verify that the blur estimation method based on cepstrum analysis shows a better performance through the experiments.

Procedural Animation Method for Realistic Behavior Control of Artificial Fish (절차적 애니메이션 방법을 이용한 인공물고기의 사실적 행동제어)

  • Kim, Chong Han;Youn, Jae Hong;Kim, Byung Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.801-808
    • /
    • 2013
  • In the virtual space with the interactive 3D contents, the degree of mental satisfaction is determined by how fully it reflect the real world. There are a few factors for getting the high completeness of virtual space. The first is the modeling technique with high-polygons and high-resolution textures which can heighten an visual effect. The second is the functionality. It is about how realistic represents dynamic actions between the virtual space and the user or the system. Although the studies on the techniques for animating and controlling the virtual characters have been continued, there are problems such that the long production time, the high cost, and the animation without expected behaviors. This paper suggest a method of behavior control of animation by designing the optimized skeleton which produces the movement of character and applying the procedural technique using physical law and mathematical analysis. The proposed method is free from the constraint on one-to-one correspondence rules, and reduce the production time by controlling the simple parameters, and to increase the degree of visual satisfaction.

Numerical Investigation of Effect of Opening Pattern of Flow Control Valve on Underwater Discharge System using Linear Pump (유량제어밸브 개방형태가 선형펌프 방식 수중사출 시스템에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.255-265
    • /
    • 2019
  • In the present study, the effect of opening patterns of a flow control valve on underwater discharge systems using a linear pump was investigated numerically. For that, a improved mathematical model was developed. The improvement is to separate a middle tank from a water cylinder because the cross-section area of the inlet of the middle tank is an important parameter. To validate the improved model, calculation results were compared with a previous study. The results showed that $2^{nd}$ order or more polynomial opening patterns had an advantage over ramp opening patterns. Higher an order of polynomial resulted in wider operating limits. An escape velocity and a maximum acceleration of underwater vehicle were affected by time derivative of the cross-section area of the flow control valve. Besides, as a velocity profile of the vehicle got closer to linearity, the escape velocity got faster and the maximum acceleration got smaller. And velocities of the vehicle and piston had similar variation trend.

Effect of Command Signal of Flow Control Valve on Performance of Underwater Discharge System using Linear Pump - Numerical Investigation (유량제어밸브 인가신호 형태가 선형펌프 방식 수중사출 시스템의 성능에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo;Choi, Wonshik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.219-227
    • /
    • 2021
  • In the present study, the effect of command signals of the flow control valve on performance of underwater discharge systems using a linear pump was investigated numerically. For that, the improved mathematical model was developed. The improvement is to calculate the flow leakage between the water cylinder and the piston. Also the model of the hydraulic cylinder is simplified. To validate the improved model, calculation results were compared with experiment results. The results of the study is as follows: Double ramp command signals of the flow control valve had an advantage over single ramp signals. The parametric study on the effect of double ramp command signals on performance of the system was performed. In case of using double ramp signals, the maximum acceleration of the underwater vehicle was reduced by approximately 50 % compared with using single ramp signals.

Multirate and Composite Control of Two-Time-Scale Stochastic Discrete-Time Systems (두개의 시간스케일 추계 이산시간 시스템의 다중표본화 복합제어기)

  • Park, Jong-Wook;Hong, Jae-Keun;Kim, Soo-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1225-1228
    • /
    • 1987
  • It is shown that the singularly perturbed continuous-time system is led to two different discrete versions according to slow or fast sampling rates. The design of stabilizing feedback control of singularly perturbed discrete-time stochastic system is decomposed into the design of slow and fast controllers, which is combined to form the composite control. Composite control law is derived for the case of both single rate measurement and multirate measurement.

  • PDF

A Development of a Remote Control System for Marine Instrument Using the Combination of FSK and ASK (FSK와 ASK 조합형 수중 초음파 원격제어시스템 개발)

  • Kim, Young-Jin;Jeong, Han-Cheol;Huh, Kyung-Moo;Cho, Young-June;Min, Byung-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.186-188
    • /
    • 2006
  • To secure abyssal resources, submarine environment should be firstly explored. On that occasion, the withdrawal of the instrument is of importance and the submarine ultrasonic wave should be stably identified regardless submarine environment and passive factor. In the existing control methods, the control informations, received from an observation instrument, are identified used by hardware and repeatedly compared with standard information. Hereupon, a marine observation instrument remote control system using the combination of FSK and ASK that was improved its controllability and movability was presented in this paper. Likewise, the logicality of control algorithm and remote control system were ascertained by experiments.

  • PDF

Localization and Autonomous Control of PETASUS System II for Manipulation in Structured Environment (구조화된 수중 환경에서 작업을 위한 PETASUS 시스템 II의 위치 인식 및 자율 제어)

  • Han, Jonghui;Ok, Jinsung;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • In this paper, a localization algorithm and an autonomous controller for PETASUS system II which is an underwater vehicle-manipulator system, are proposed. To estimate its position and to identify manipulation targets in a structured environment, a multi-rate extended Kalman filter is developed, where map information and data from inertial sensors, sonar sensors, and vision sensors are used. In addition, a three layered control structure is proposed as a controller for autonomy. By this controller, PETASUS system II is able to generate waypoints and make decisions on its own behaviors. Experiment results are provided for verifying proposed algorithms.

Design and Development of a Remotely Operated Vehcile(ROV) (무인잠수정(ROV)의 설계 및 개발)

  • 홍도천;이판묵;이종식;공도식;최학선;현법수
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.62-72
    • /
    • 1993
  • This paper describes the results of 3 years project on the design and development of a 500 meter class ocean survery ROV model. The design concept and the design procedure are given for each component of the ROV model. The design concept and the design procedure are given for each component of the ROV. Special emphasis is laid on the development of the position control system together with the development of the performance evaluation technique.

  • PDF