• Title/Summary/Keyword: 수중채널

Search Result 240, Processing Time 0.029 seconds

Performance evaluation of a modified waveform shaping filter for the underwater acoustic communication (수중 음향 통신에 있어서 변형된 파형 정형 필터의 성능 평가)

  • Park, Kyu-Chil;Jeong, Hyunsoo;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.114-119
    • /
    • 2019
  • The transmitted acoustic signals are severely influenced by multiply reflected signals from boundaries, such as sea surface and bottom in the shallow water. Very large reflection signals from boundaries cause inter-symbol interference so that the performance of the underwater acoustic communication is degraded. Usually, the waveform shaping filters are used to prevent the reflected signals under this kind of acoustic channel. Especially, the raised cosine filter is widely used, which can also be used to restrict the bandwidth of the transmitted signal. In this study, we evaluate the raised cosine filter for image data transmission in the shallow water, and propose a new modified raised cosine filter. The QPSK (Quadrature Phase Shift Keying) system is used for the underwater acoustic communication simulations with different distances and symbol rates. As a result, the bit error rate was reduced from the minimum 1.0 % to the maximum 32 %.

Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea (동해에서 주파수 변조에 기반한 장거리 수중음향통신의 해상실험 결과)

  • Lee, Joo-Hyoung;Lee, Geun-Hyeok;Kim, Ki-Man;Kim, Wan-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2019
  • In this paper, we present the sea trial results of long distance underwater acoustic communication in the East Sea, October 2018. One transmitter and sixteen vertical array receivers were used to collect underwater acoustic communication signals, and the maximum distance between the transmitter and the receiver was 90 km. Information was transmitted by BFSK (Binary Frequency Shift Keying) and BCSK (Binary Chirp Shift Keying) method, which are typical digital frequency modulation techniques. Experimental results show that there is no error in all cases at the transmission distance of 60 km, and BFSK and BCSK have average uncoded bit error rate of 0.0197 and 0.0007 respectively without channel coding at 90 km transmission distance.

Performance analysis of real sea area according to OFDM parameters in the underwater channel environment of the West Sea and South Sea of Korea (대한민국 서해, 남해 수중 채널 환경에서 OFDM 파라미터에 따른 실해역 성능 분석)

  • Chung, Tea-Geon;Lim, Hyun-Taek;Im, Tae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1086-1094
    • /
    • 2020
  • AThis paper measured real sea area for performance analysis according to distance from west sea and south sea of Korea. The performance of the underwater OFDM system was analyzed by comparing the performance of the West and South Seas by adjusting the number of data repetitive transmissions and the pilot symbol placement interval parameters based on the real-sea data measured from the distance and Data rate of the West and South Sea vessels. In conclusion, when comparing the performance of the South Sea at the Data rate and distance, the BER performance of the South Sea was similar at the 5 km South Sea and 1 km West Sea under the same conditions. Placement interval of pilot symbol at 10 km of South Sea and 3 km of West Sea is (𝚫f, 𝚫t) = (6, 3) and the number of times the PRB is (Rf, Rt) = (2, 1) repeated. We confirmed that we can send high data over long distances in the South Sea.

Doppler shift frequency estimation and compensation in underwater acoustic communication using triangle spread carrier technique (Triangle spread carrier 기법을 이용한 수중음향통신에서 도플러 천이 주파수 추정 및 보상 )

  • Chang-hyun Youn;Hyung-in Ra;Kyung-one Lee;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.169-180
    • /
    • 2023
  • The performance of underwater acoustic communication is greatly affected by multipath propagation and Doppler spread. This paper proposes a new communication technique, the Triangle Spread Carrier (TSC) technique, by modifying the existing Sweep Spread Carrier (SSC) technique that is strong in a multipath propagation environment. The proposed TSC technique is a form in which the up-chirp and down-chirp signals have repeated carriers, and each correlation function characteristic is used to estimate and correct the Doppler shift frequency of the receiving signal. To demonstrate the performance of the proposed TSC technique, we present the results of simulations using underwater channel simulators and sea trial conducted in the East Sea. When demodulating using only the estimated Doppler shift frequency as a result of the sea trial, the uncoded bit error rate was up to 0.194, but when the proposed method was applied, the uncoded bit error rate was reduced to 0.001.

Detection of Underwater Transient Signals Using Noise Suppression Module of EVRC Speech Codec (EVRC 음성부호화기의 잡음억제단을 이용한 수중 천이신호 검출)

  • Kim, Tae-Hwan;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.301-305
    • /
    • 2007
  • In this paper, we propose a simple algorithm for detecting underwater transient signals on the fact that the frequency range of underwater transient signals is similar to audio frequency. For this, we use a preprocessing module of EVRC speech codec that is the standard speech codec of the mobile communications. If a signal is entered into EVRC noise suppression module, we can get some parameters such as the update flag, the energy of each channel, the noise suppressed signal, the energy of input signal, the energy of background noise, and the energy of enhanced signal. Therefore the energy of the enhanced signal that is normalized with the energy of the background noise is compared with the pre-defined detection threshold, and then we can detect the transient signal. And the detection threshold is updated using the previous value in the noisy period. The experimental result shows that the proposed algorithm has $0{\sim}4% error rate in the AWGN or the colored noise environment.

Covariance-based source localization performance improvement for underwater ultra-short baseline systems (공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법)

  • Sangman Han;Minhyuk Cha;Haklim Ko;Hojun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.89-94
    • /
    • 2024
  • Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.

A Study on a Multi-channel Fiber Optic Hydrophone System (다채널 광섬유 하이드로폰 배열 시스템에 관한 연구)

  • 김정석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.89-93
    • /
    • 2001
  • In recent years Fiber optic hydrophone systems have been the focus of much attention in the sonar world. For sonar arrays, a fiber optic approach offers the major benefit of passive multiplexing of large numbers of hydrophones without underwater electronics. This paper describes recent development work covering array construction, opto-electronics development, hydrohpone design and sea trials. And the development of an interferometric mult-channel fiber optic hydrophone system which uses time division multiplexing capable of driving in excess of 32 channel is described. For this, a 12 channel time division multiplexing array has been constructed, and the performance of this system is demonstrated by sea trial.

  • PDF

Media Access Control Protocol based on Dynamic Time Slot Assignment in Underwater Mobile Ad-hoc Network (동적 타임 슬롯 할당에 기반한 수중 모바일 Ad-hoc 네트워크에서의 매체접근제어 프로토콜)

  • Shin, Seung-Won;Kim, Yung-Pyo;Yun, Nam-Yeol;Park, Soo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.81-89
    • /
    • 2011
  • Underwater wireless network can be useful in various fields such as underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, and vessel sinking exploration. We need to develop an efficient design for Medium Access Control (MAC) protocol to improve multiple data communication in underwater environment. Aloha protocol is one of the basic and simple protocols, but it has disadvantage such as collision occurs oftenly in communication. If there is collision occured in RF communication, problem can be solved by re-sending the data, but using low frequency in underwater, the re-transmission has difficulties due to slow bit-rate. So, Time Division Multiple Access (TDMA) based MAC protocol is going to be used to avoid collisions, but if there is no data to send in existing TDMA, time slot should not be used. Therefore, this paper proposes dynamic TDMA protocol mechanism with reducing the time slots by sending short "I Have No Data" (IHND) message, if there is no data to transmit. Also, this paper presents mathematic analysis model in relation to data throughput, channel efficiency and verifies performance superiority by comparing the existing TDMA protocols.

Analysis of passive time-reversal communication performance in shallow water with underwater sound channel (음향채널이 존재하는 천해에서의 수동 시역전 통신 성능 분석)

  • Choi, Kang-Hoon;Kim, Sunhyo;Choi, Jee Woong;Kim, Hyeonsu;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • A passive time-reversal technique can improve error performance of the underwater communication system by reducing influence of inter-symbol interferences, which is caused by a multipath channel response. The passive time-reversal communication system equipped with numerous receivers generally can obtain superior error performance since larger diversity gain can be obtained as the number of available received signal increased. In this paper, we analyze the optimal number and combination of receivers that can approximately achieve the best error performance when using the limited number of receivers. For this analysis, we use communication data collected during SAVEX15 (Shallow-water Acoustic Variability Experiment 2015) carried out in the south-western part of Jeju Island from May 14 to May 28, 2015. Analysis results show that there are depths of energy concentration due to the channel characteristics in which the underwater sound channel are present, and the passive time-reversal technique using the limited number of the receivers can derive near-optimal communication performance if the receivers for time-reversal processing are located at the depths where energy is concentrated.

Medium Access Control Using Channel Reservation Scheme in Underwater Acoustic Sensor Networks (해양센서네트워크에서 채널예약방식을 이용한 매체접근제어)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.955-963
    • /
    • 2009
  • In this paper, we propose a medium access control(MAC) protocol for reducing the energy efficiency and for improving the transmission efficiency in underwater acoustic sensor networks. In underwater environment, the transmission delay is longer and bandwidth is smaller than terrestrial environment. Considering these points, we propose a new MAC protocol to enhance throughput and to manage efficiently the energy of nodes. The proposed protocol operates as a channel reservation scheme to decrease data collisions, and uses a mechanism to control the hidden node problem and the exposed node problem occurred in ad hoc networks. The proposed protocol consists of the slotted based transmission frame and reduces data collisions between nodes by putting separately the reservation period in the transmission frame. In addition, it is able to solve the hidden node problem and the exposed node problem by reservation information between nodes. We carry out the simulation to evaluate the proposed protocol in terms of the average energy consumption, the ratio of collision, throughput, and the average transmission delay, and compare the proposed protocol to a traditional MAC protocol in the underwater environment. The simulation results show that the proposed protocol outperforms the traditional protocol under a various of network parameters.