DOI QR코드

DOI QR Code

Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea

동해에서 주파수 변조에 기반한 장거리 수중음향통신의 해상실험 결과

  • 이주형 (한국해양대학교 전파공학과) ;
  • 이근혁 (한국해양대학교 전파공학과) ;
  • 김기만 (한국해양대학교 전파공학과) ;
  • 김완진 (국방과학연구소)
  • Received : 2019.03.11
  • Accepted : 2019.05.14
  • Published : 2019.07.31

Abstract

In this paper, we present the sea trial results of long distance underwater acoustic communication in the East Sea, October 2018. One transmitter and sixteen vertical array receivers were used to collect underwater acoustic communication signals, and the maximum distance between the transmitter and the receiver was 90 km. Information was transmitted by BFSK (Binary Frequency Shift Keying) and BCSK (Binary Chirp Shift Keying) method, which are typical digital frequency modulation techniques. Experimental results show that there is no error in all cases at the transmission distance of 60 km, and BFSK and BCSK have average uncoded bit error rate of 0.0197 and 0.0007 respectively without channel coding at 90 km transmission distance.

본 논문에서는 2018년 10월 동해에서 수행된 장거리 수중음향통신의 해상실험 결과를 제시한다. 하나의 송신기와 16개의 수직 배열 수신기를 이용하여 수중음향통신 신호를 수집하였으며, 송신기와 수신기 사이의 거리는 최대 90 km로 하였다. 대표적인 디지털 주파수 변조 기법에 해당하는 BFSK(Binary Frequency Shift Keying) 방식과 BCSK(Binary Chirp Shift Keying) 방식으로 정보를 전송하였다. 실험 결과 60 km 전송 거리에서는 모든 경우에서 오류가 나타나지 않았으며, 90 km 전송 거리에서는 채널 부호화 기법이 적용되지 않은 비부호화 비트 오류율에 있어서 BFSK와 BCSK 두 방식 각각 평균 0.0197과 0.0007을 나타내었다.

Keywords

GOHHBH_2019_v38n4_371_f0001.png 이미지

Fig. 1. Block diagram of BFSK transmission.

GOHHBH_2019_v38n4_371_f0002.png 이미지

Fig. 2. Block diagram of BCSK transmission.

GOHHBH_2019_v38n4_371_f0003.png 이미지

Fig. 3. Spectrogram of the generated BCSK signal.

GOHHBH_2019_v38n4_371_f0004.png 이미지

Fig. 4. Geometry of transmitter and receiver array for sea trial.

GOHHBH_2019_v38n4_371_f0005.png 이미지

Fig. 5. Sound speed profile at 90 km.

GOHHBH_2019_v38n4_371_f0006.png 이미지

Fig. 6. Channel impulse response characteristics at 90 km.

GOHHBH_2019_v38n4_371_f0007.png 이미지

Fig. 7. Spectrogram of BFSK signal at 60 km range.

GOHHBH_2019_v38n4_371_f0008.png 이미지

Fig. 8. Spectrogram of BCSK signal at 60 km range.

GOHHBH_2019_v38n4_371_f0009.png 이미지

Fig. 9. Spectrogram of BFSK signal at 90 km range.

GOHHBH_2019_v38n4_371_f0010.png 이미지

Fig. 10. Spectrogram of BCSK signal at 90 km range.

GOHHBH_2019_v38n4_371_f0011.png 이미지

Fig. 11. Uncoded BER of BFSK signal at 90 km transmission.

GOHHBH_2019_v38n4_371_f0012.png 이미지

Fig. 12. Uncoded BER of BCSK signal at 90 km transmission.

References

  1. M. Stojanovic, "Underwater acoustic communications," Proc. IEEE Electro International, 435-440 (1995).
  2. A, Plaisant, "Long range acoustic communication," Proc. IEEE Oceanic Engineering Society, 472-476 (1998).
  3. Z. Liu, K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg, "Long range double differentially coded spread spectrum acoustic communication with a towed array," IEEE J. Ocean. Eng., 39, 482-490 (2014). https://doi.org/10.1109/JOE.2013.2264994
  4. T. Shimura, Y. Watanabae, H. Ochi, and H.C. Song, "Long range time reversal communication in deep water: Experimental result," J. Acoust. Soc. Am. 132, 49-53 (2012). https://doi.org/10.1121/1.4730038
  5. A. R. Cho, C. H. Yun, S. G. Kim, Y. K. Lim, S. J. Seo, and Y. C. choi, "Implementation of a long-range underwater acoustic network protocol," Proc. KICS Int. Conf. Commun., 43, 397-407 (2018).
  6. Neptune Sonar. Available Online, http://www.neptunesonar.co.uk/product-category/standard-transducer-products/projectors/free-flooded-ring-projectors/, 2018.
  7. E. J. Kaminsky, "Chirp slope keying for underwater communication," Electrical Engineering Faculty publication, 5778, 894-905 (2005).
  8. F. Steinmetz, J. Heitmann, and C. Renner, "A practical guide to chirp spread spectrum for acoustic underwater communication in shallow water," WUWNet (2018).
  9. C. U. Baek and Ji-Won Jung, "An efficient receiver structure based on PN performance in underwater acoustic communication," J. Navig. Port Res, 41, 173-180 (2017). https://doi.org/10.5394/KINPR.2017.41.4.173