• Title/Summary/Keyword: 수중전위분포

Search Result 6, Processing Time 0.022 seconds

A Study on the Characteristic of Electric-Shock Mechanism in the Water (수중에서의 감전 메카니즘 특성에 관한 연구)

  • Do, Bum-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.111-118
    • /
    • 2007
  • Recently electric shock accidents constantly occurs caused by the street lamps. Especially the chance of electric shock accident is high when the street lamp submerges by heavy rainfall. Electric shock accident occurs mostly on the low voltage facilities of 220V, but the awareness of its danger is insufficient. The electric shock accident by street lamp voltage of 220V is very dangerous because it is installed in the street which is easily in contact with people. But there are insufficient investigation concerning the affect to hwnan body of underwater electric potential distribution as the distance changes from the leakage object in case of short circuit. In this thesis, the analysis will be made on the affect of underwater Earth leakage to human body and electric potential distribution in underwater, and to draw a comparison between electric shock channel and electric shock mechanism by experimenting on the affect to human body of underwater electric shock as the distance changes from the leakage object.

A Study on the Electric Shock due to Submerged Power Source (침수 상용전원에 의한 감전위험성 검토)

  • Jung, Jong-Wook;Jung, Jin-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2007
  • This paper describes a risk assessment of electric shock based on a experiment which demonstrates a submerged commercial power source. For the experiment a water tank was made and an outlet was installed on an interior wall. After filling the tank with a conductive water solution, the electric potential was measured with the distance, the direction from the power source, the conductivity and the level of the water solution. As a result, the potential distribution due to the outlet energized and exposed to the water solution depends on the distance from the submerged power source, however, the direction from the power source, the conductivity and the level of the water solution seemed to scarcely affected on the electrical shock risk.

Evaluations of Dangerous Voltages around Grounding Electrode using Small-sized Model (축소모델을 이용한 접지전극 주변의 위험전압 평가)

  • Baek, Young-Hwan;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.83-88
    • /
    • 2010
  • In this paper, to propose a valid method solving a problem relevant to grounding from actual field data, the experimental results relevant to touch and step voltages and surface potential profiles measured around the real-sized and small-sized grounding electrode models were described. The ground surface potential profiles and dangerous voltages around the concrete pedestals employed in street facilities such as street lamps, traffic signal lamp and controllers as a case study were measured and discussed. The hemispherical cell with a diameter of 1,160[mm] was employed to simulate uniform soil. As a result, the results measured with the small-sized model were in reasonably agreement with the data obtained from the real-sized installation. It was found that the small-sized model test could be employed as a useful means evaluating the dangerous voltages around grounding electrodes installed at the inaccessible areas such as mountains, underground, underwater, and so on.

Prediction of Chemical Species of Copper and Cadmium in Natural Waters (천연수중 구리 및 카드뮴의 화학종 예측)

  • Chung Kil Park;Un Sik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.637-645
    • /
    • 1985
  • To predict speciation of copper and cadmium in natural waters, the stability constant of complexes formed between copper or cadmium and natural organic ligands have been determined by the ion selective electrodes at pH 6. The stability constants for copper and cadmium, log $K'_{CuL} = 5.80\;and\;log K'_{CdL}=3.82$, were incorporated inot MINEQL computer program and prediction of chemical species of copper and cadmium in a model fresh water system was made by using this computer program. The natural organic ligands form complex with cupric ions at the concentration of $10^{-6}$ moles/l and with cadmium ions at the concentration of $10^{-5}$ moles/l. This result showed that prediction of chemical species of heavy metals in natural waters was not possible without taking into account the presence of the natural organic ligands.

  • PDF

A Study on the Polarization Potential Distrbution of a Steel Disc in the Water by Specific Resistance of Corrosion Circumstances (환경의 비저항을 고려한 수중 원강판의 분극전위분포에 관한 연구)

  • 김귀식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.105-108
    • /
    • 1981
  • The oceanic effect on the climate of the southern coast of Korea was analysed based on the sea surface temperature and in order to study relationships between the fluctuation of the sea surface temperature and that of climatic elements. Meteolorogical data from 1960 to 1979 were used. In the year when difference between the air and water temperature was maximum, the air temperature in southern coast was higher than normal year. A fluctuation of the sea surface temperature plays an important influence to determine the variation of the air temperature in the coastal area. Humidity of the coastal climate depends upon the oceanic effect in summer, but not in winter. This results may be due to prevailing wind effect. The oceanic effect on the precipitation in the coastal area is not found.

  • PDF

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF