• Title/Summary/Keyword: 수중구조물

Search Result 226, Processing Time 0.03 seconds

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

Compressive Strength Estimation Technique of Underwater Concrete Structures using Both Rebound Hardness and Ultrasonic Pulse Velocity Values (반발경도와 초음파속도를 이용한 수중 콘크리트 구조물의 압축강도 예측 기술)

  • Shin, Eun-Seok;Lee, Ji-Sung;Park, Seung-Hee;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.118-125
    • /
    • 2014
  • As the earth's current global warming has caused elevation of sea water temperature, size of storms is foreseen to increase and consequently large damages on port facilities are to be expected. In addition, due to the improved processing efficiency of port cargo volume and increasing necessity for construction of eco-friendly port, demands for various forms of port facilities are anticipated. In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of smart green harbor system. A new methodology to estimate the underwater concrete strengths is proposed and its feasibility is verified throughout a series of experimental works.

Flow Characteristics through the Singok Submerged Weir in Downstream of the Han River (한강하류 신곡수중보의 흐름특성)

  • Kim, Su Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.20-20
    • /
    • 2020
  • 신곡수중보는 한강종합개발사업(1982년~1986년) 중 하도정비로 인하여 상시 수위가 저하됨으로써 조수의 과도한 역류 등으로 발생하는 이수상의 문제점을 해결하고 상류에 설치된 잠실수중 보 사이의 수위유지 및 하천 공간 이용의 극대화, 연안 농경지의 용수공급 및 하천환경 보전을 목적으로 건설되어, 「잠실 및 신곡수중보 관리규정(1986)」 및 「신곡수중보 운영 매뉴얼」에 의해 관리·운영되고 있다. 신곡수중보는 준공된 이래로 한강하류의 흐름 해석에 있어 중요한 기준과 경계로서 이와 관련한 다양한 연구가 진행되었다. 신곡수중보로 인한 흐름의 변화가 하상과 생태에 미치는 영향에 관한 연구와 하구역에서의 조위 및 흐름특성과 밀도류의 거동에 관한 1, 2차원 수치해석연구가 활발히 진행되었다. 본 연구에서는 그동안 1, 2차원 수치해석연구로 한정되었던 신곡수중보 흐름특성에 관련하여 실제 수문 운영 방식을 반영한 3차원 수치해석을 수행하여 구조물의 상·하류에서 발생하는 와류 및 이차류와 같은 3차원적 흐름 구조와 이에 따른 지형의 침식·퇴적 및 구조물에 미치는 영향 등을 구체적으로 분석하였다. 우선, 신곡수중보 운영 매뉴얼과 실제 가동보 운영시스템을 비교하여 수문개방 시기, 유량 기준의 수문 운영 방법, 수위 변화에 따른 수문 운영 방법, 수문개방 순서를 분석하고 신곡수중보 주변 흐름에 대한 3차원 수치해석모형 구축을 위한 경계조건을 산정하였다. 수치해석에는 상용프로그램인 FLOW-3D를 사용하였으며, 경계처리기법 및 난류해석을 위해 FAVOR 기법과 RNG k-ε 모델을 적용하였다. 수문 동시개방 개수, 수문 개방 위치 및 순서, 개방 높이에 대한 조건을 변화시켜 구성한 시나리오에 대해 수치해석 후, 유속, 난류에너지, 이차류 등의 흐름특성을 분석하고 상·하류 수위차에 따른 방류량을 산정하여 시설물의 관리안을 도출하고 운영 매뉴얼의 개정안을 제시하였다.

  • PDF

Modal Characteristics and Vibration Control of Cylindrical Shell Structure: Experimental Results Comparison in the Air and Water (실린더형 쉘 구조물의 모드 특성 및 진동제어: 공기중 및 수중 실험결과 비교)

  • Sohn, Jung-Woo;Kwon, Oh-Cheol;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.384-389
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and Macro-Fiber Composite (MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

  • PDF

Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water (실린더형 셸 구조물의 모드 특성 및 진동제어 : 공기중 및 수중 실험결과 비교)

  • Sohn, Jung-Woo;Kwon, Oh-Cheol;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.899-906
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and macro-fiber composite(MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

Development of Controllers and Battery Management Systems(BMS) for Underwater Drones Equipped with Multi-channel BLDC Motors (다채널 BLDC 모터가 장착된 수중 드론용 컨트롤러 및 배터리 관리시스템(BMS) 개발)

  • Jong-Sil Kim;Yeong-Tae Ju;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.405-412
    • /
    • 2023
  • With the development of drone and ICT convergence technology, the use of underwater drones such as leisure underwater drones such as underwater exploration for fishing and industrial drones such as bridge piers is increasing. Existing motor controllers are suitable for aerial drones and these can increase the completeness of underwater drones and their reliability in motor control by developing BLDC motor controllers dedicated to underwater drones. By developing a battery management system (BMS) exclusively for underwater drones, battery stability was ensured by checking the state of charge, checking the state of discharge, adjusting cell balancing, and implementing high/voltage protection functions.

Seismic Sliding Characteristics of Rectangular Structures Submerged in a Rectangular Pool (수조내 사각단면 구조물의 미끄럼 지진응답 특성)

  • 신태명;이희남
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.260-266
    • /
    • 1998
  • According to the conventional method of analysis for the seismic sliding of equipment submerged in a pool, in general, only the initial condition of fluid gap is used to estimate the hydrodynamic effect between the two structures throughout the seismic analysis. This is based on the assumption of small displacement relative to the fluid gap thickness during earthquakes. In a narrow fluid gap condition, however, this method may lead to a result of unconservative side. Through example seismic analyses for equipment submerged in a pool of a building, in this paper, it is studied when and how much the sliding response can be underestimated. And method of updating the hydrodynamic effect in each step of time integration is proposed to avoid excessive error in estimation of peak sliding response in such a case.

  • PDF

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 1 - Material Development and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 1 - 재료 개발 및 성능 검토)

  • Choi, Jin-Won;Kim, Young-Jun;You, Young-Jun;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • Recent studies on concrete floating structure development focused on connection system of concrete modules. Precast concrete modules are designed to be attached by prestressing in the water, exposing the structure to the loads from water and making the construction difficult. Therefore, a development of bond material became a key issue in successful connection of floating concrete modules. In this study, micro-silica mixed aqua epoxy (MSAE) is developed for the task. Existing primer aqua epoxy, originally used as a bond material for the retrofit of concrete structures using fiber reinforced polymers, is evaluated to find the optimum micro-silica added mix proportion. Micro-silica of 0~4 volume % was mixed in standard mixture of aqua epoxy. Then, the material property tests were performed to study the effect of micro-silica in aqua epoxy by controlling the epoxy silane proportion by 0, ${\pm}5$, ${\pm}10%$. The optimum mix design of MSAE was derived based on the test results. The MSAE was used to connect concrete module specimens with the epoxy thickness variation of 5, 10, and 20mm. Then, 3-point loading test was performed to verify the bond capacity of MSAE. The results show that MSAE improves the bond capacity of concrete module.

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 2 - Structural Application and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 2 - 구조 접합 성능 평가)

  • Choi, Jin-Won;You, Young-Jun;Jeong, Youn-Ju;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Recent studies to develop Very Large Floating Structure(VLFS) has shown that the construction procedure of the structure needs to acquire precast concrete module connection system using prestressing. However, the loads occurring on water are complex combinations of various condition, so the safe and stable performance of the module joints and bonding materials are key to the success of the construction. Therefore, micro-silica mixed aqua-epoxy development was introduced in Part 1 using a bonding material developed in this study. The performance of the micro-silica mixed aqua-epoxy(MSAE) applied joint of concrete module specimens connected by prestressing tendon was evaluated to verify the usability and safety of the material. RC beam, spliced beam connected by prestressing tendon and MSAE, and continuous prestressed concrete beam were tested for their initial cracking and maximum loads as well as cracking procedure and pattern. The results showed that the MSAE can control the stress concentration effect of the shear key and the crack propagation, and the maximum load capacity of MSAE joint specimens are only 5% less than that of continuous RC specimen. The details of the study are discussed in detail in the paper.