• Title/Summary/Keyword: 수소 이온 전도도

Search Result 189, Processing Time 0.028 seconds

Effect of Nafion Chain Length on Proton Transport as a Binder Material (수소이온 전달 특성에 미치는 바인더로 활용 가능한 나피온의 주쇄 길이의 영향)

  • Kang, Hoseong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • The purpose of this study was to compare the water channel morphology and the proton conductivity by changing the number of repeating units of the polymer backbone of PEMs, and to present a criterion for selecting an appropriate polymer model for MD simulation. In the model with the shortest polymer main chain, the movement of the main chain and the sulfonic acid group was observed to be large, but no change in the water channel morphology was found. In addition, due to the nature of the proton transport ability that is most affected by the water channel morphology, the proton conductivity did not show a significant correlation with the length of the polymer backbone. These results provide important information, particularly for the preparation of ionomers for binders. In general, a low molecular weight polymer electrolyte material is used for a binder ionomer. Since the movement of the main chain/sulfonic acid group is improved, it can play a role of enclosing the catalyst layer well. However, there is no change in its proton conducting performance. In conclusion, the preparation of ionomers for binders will require molecular weight and structure design with a focus on physical properties rather than proton transfer performance.

Preparation of multi-component ceramic proton conductors for intermediate temperature fuel cell (중온형 연료전지를 위한 다성분계 세라믹 수소이온 전도체 제조)

  • Lim, Byeong-mu;Seo, Dong-ho;Park, Sang-sun;Lee, Hong-yeon;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.410-411
    • /
    • 2009
  • The multi-component ceramic proton conductor, $BaZr(Y)O_3-SiO_2-TiO_2-ZrO_2$ (BZY-STZ) and $LaPO_4-SiO_2-TiO_2-ZrO_2$ (LP-STZ), were synthesized by micro-emersion and sol-gel technique. The characterization of proton conductors were carried out using X-ray diffraction(XRD), thermogravimetric analysis(TGA), differential thermal analysis(DTA), impedance analysis. The proton conductors indicate the possibility of application for the intermediate temperature up to $700^{\circ}C$.

  • PDF

Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells (연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.

Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell (블록 및 랜덤 가교 술폰화 폴리이미드막의 제조 및 연료전지특성 평가)

  • Lee, Young-Moo;Park, Chi-Hoon;Lee, Chang-Hyun;Chung, Youn-Suk
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.241-251
    • /
    • 2006
  • In this study, crosslinked copolyimides with random (r-) and block (b-) structure were fabricated using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and pentanediol as crosslinkers. Linear r- and b-sulfonated copolyimides were also fabricated for comparison. Ion exchange capacities of r- and b-copolyimides were very similar to each other owing to their strong dependence of sulfonic acid content. The physical crosslinking via dimerization of carboxylic acid groups induced a reduced average interchain distance in b-copolyimide without crosslinkers. Consequently, its water uptake and methanol permeability were lower than those of r-sulfonated copolyimides. Simultaneously, the reduced interchain distance increased the content of fixed-charged ions per unit volume. The high fixed-charged ion density contributed to an enhancement of proton conductivity In the b-sulfonated copolyimide. Crosslinking caused the reduction of average interchain distance between polymer chains irrespective of types of crosslinker and polymer structure, leading to low methanol permeability. On the contrary, their proton conductivity was improved owing to formation of effective hydrophilic channels responsible for proton conduction. In particular, this trend was observed in r-copolyimide containing a fixed charged ion.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

Synthesis and Characterization of Proton Conducting Graft Copolymer Membranes (수소이온 전도성 가지형 공중합체 전해질막 제조 및 분석)

  • Roh, Dong Kyu;Koh, Jong Kwan;Seo, Jin Ah;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.126.2-126.2
    • /
    • 2010
  • The "grafting from" technology to prepare the well-defined microphase-separated structure of polymer using atom transfer radical polymerization (ATRP) will be introduced in this presentation. Various amphiphilic comb copolymers were synthesized through this approach using poly (vinylidene fluoride) (PVDF), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE) and poly(vinyl chloride) (PVC) as a macroinitiator. Hydrophilic side chains such as poly (styrene sulfonic acid) (PSSA) or poly (sulfopropyl methacrylate) (PSPMA) were grafted from the mains chains using direct initiation of the chlorine atoms. The structure of mass transport channels has been controlled and fixed by crosslinking the hydrophobic domains, which also provides the greater mechanical properties of membranes. Successful synthesis and microphase-separated structure of the polymer were confirmed by $^1H$ NMR, FT-IR spectroscopy and TEM. The grafted/crosslinked membranes exhibited good mechanical properties (400 MPa of Young's modulus) and high thermal stability (up to $300^{\circ}C$), as determined by a universal testing machine (UTM) and TGA, respectively.

  • PDF