Browse > Article

Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell  

Lee, Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
Park, Chi-Hoon (School of Chemical Engineering, College of Engineering, Hanyang University)
Lee, Chang-Hyun (School of Chemical Engineering, College of Engineering, Hanyang University)
Chung, Youn-Suk (School of Chemical Engineering, College of Engineering, Hanyang University)
Publication Information
Membrane Journal / v.16, no.4, 2006 , pp. 241-251 More about this Journal
Abstract
In this study, crosslinked copolyimides with random (r-) and block (b-) structure were fabricated using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and pentanediol as crosslinkers. Linear r- and b-sulfonated copolyimides were also fabricated for comparison. Ion exchange capacities of r- and b-copolyimides were very similar to each other owing to their strong dependence of sulfonic acid content. The physical crosslinking via dimerization of carboxylic acid groups induced a reduced average interchain distance in b-copolyimide without crosslinkers. Consequently, its water uptake and methanol permeability were lower than those of r-sulfonated copolyimides. Simultaneously, the reduced interchain distance increased the content of fixed-charged ions per unit volume. The high fixed-charged ion density contributed to an enhancement of proton conductivity In the b-sulfonated copolyimide. Crosslinking caused the reduction of average interchain distance between polymer chains irrespective of types of crosslinker and polymer structure, leading to low methanol permeability. On the contrary, their proton conductivity was improved owing to formation of effective hydrophilic channels responsible for proton conduction. In particular, this trend was observed in r-copolyimide containing a fixed charged ion.
Keywords
fuel cell; proton exchange membrane; block copolymer; polyimide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Scrosati, 'Applications of Electroactive Polymers', Chapman & Hall, London (1993)
2 유민철, 장봉준, 김정훈, 이수복, 이용택 '연료전지를 위한 술폰화된 Perfluorocyclobutyl Biphenylene 고분자 전해질막', Membrane Journal, 15, 355 (2005)
3 이창현, 손준용, 박호범, 이영무, '에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구', Membrane Journal, 13, 110 (2003)
4 W. R. Bowen, N. Hilal, R. Lovitt, and P. Williams, 'Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution', J. Membr. Sci., 110, 229 (1996)   DOI   ScienceOn
5 E. Sacher and J. R. Susko, 'Water permeation of polymer films. I. Polyimide', J. Appl. Polym. Sci. 23, 2355 (2003)   DOI   ScienceOn
6 J. O. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, 'Fixation of Nanosized Proton Transport Channels in Membranes', Macromolecules, 36, 3228 (2003)   DOI   ScienceOn
7 Y. Yin, J. Fang, Y. Cui, K. Tanaka, H. Kita, and K. Okamoto, 'Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy)propane sulfonic acid', Polymer, 44, 4509 (2003)   DOI   ScienceOn
8 J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, 'Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes', J. Membr. Sci., 238, 143 (2004)   DOI
9 Y. K. Jun and H. K. Seong, 'Ionic conduction behavior of network polymer electrolytes based on phosphate and polyether copolymers', Solid State Ionics, 124, 91 (1999)   DOI
10 T. Watari, J. Fang, K. Tanaka, H. Kita, and K. Okamoto, 'T. Hirano, Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid', J. Membr. Sci., 230, 111 (2004)   DOI
11 H. B. Park, C. H. Lee, Y. M. Lee, B. D. Freeman, and H. J. Kim, 'Effect of Crosslinked Chain Length in Sulfonated Polyimide Membranes on Water Sorption, Proton Conduction, and Methanol Permeation Properties', J. Membr. Sci. in Press (2004)
12 B. Smitha, S. Sridhar, and A. A. Khan, 'Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells', Macromolecules, 37, 2233 (2004)   DOI   ScienceOn
13 G. Harsanyi, 'Polymer Films in Sensor Applications', Tecnnomic publishing, Lancaster, USA (1995)
14 T. J. F. Day, U. W. Schmitt, and G. A. Voth, 'The Mechanism of Hydrated Proton Transport in Water', J. Am. Chem. Soc., 122, 12027 (2000)
15 A. A. Kornshev, A. M. Kuznetsov, and E. Spohr, J. Ulstrup, 'Kinetics of Proton Transport in Water', J. Phys. Chem. B, 107, 3351 (2003)   DOI   ScienceOn
16 A. J. Appleby and F. R. Foules, 'Fuel Cell Handbook', Van Nostrand Reinhold, New York (1989)
17 이영무, 박호범, '직접 메탄올 연료전지용 고분자 전해질 분리막 소재의 개발', Membrane Journal, 10, 103 (2000)
18 W. R. Bowen, N. Hilal, R. Lovitt, and P. Williams, 'Atomic Force Microscope Studies of Membranes: Surface Pore Structures of Diaflo Ultrafiltration Membranes', J. Colloid Interface Sci., 180, 350 (1996)
19 M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, 'Mechanisms of Proton Conductance in Polymer Electrolyte Membranes', J. Phys. Chem. B, 105, 3646 (2001)   DOI   ScienceOn
20 E. Spohr, P. Commer, and A. A. Kornyshev, 'Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations', J. Phys. Chem. B, 106, 10560 (2002)
21 M. Eikerling, Yu. I. Kharkats, A. A. Kornyshev, and M. Yu, Volfkovich, 'Phenomenological theory of electroosmotic effect and water management in polymer electrolyte proton-conducting membranes', J. Electrochem. Soc., 145, 2648 (1998)   DOI   ScienceOn
22 J. McMurry, 'Organic chemistry', Brooks/Cole publishing company, A Division of Wadsworth, Inc. 3rd ed., 560 (1992)
23 A. R. Blythe, 'Electrical Properties of Polymers', Cambridge Univ. Press, New York (1979)
24 S. Singh, K. C. Khulbe, T. Matsuura, and P. Ramamurthy, 'Membrane characterization by solute transport and atomic force microscopy', J. Membr. Sci., 142, 111 (1998)   DOI   ScienceOn
25 C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, 'Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium', Polymer, 42, 5097 (2001)   DOI   ScienceOn
26 W. R. Bowen and T. Doneva, 'Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion', Desalination, 129, 163 (2000)   DOI   ScienceOn
27 J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, 'Membranes from sulfonated block copolymers for use in fuel cells', Separation and Purification Technology, 41, 207 (2005)   DOI   ScienceOn
28 J. Fang, X. Guo, S. Harada, T. Wateri, K. Tanaka, H. Kita, and K. Okamoto, 'Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4'-Diaminodi-phenyl Ether-2,2'-disulfonic Acid', Macromolecules, 35, 9022 (2002)   DOI   ScienceOn
29 F. M. Gray, 'Solid Polymer Electrolytes; Fundamentals and Technological Applications', VCH publishers, New York (1991)
30 T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, 'Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes', J. Phys. Chem., 95, 6040 (1991)   DOI
31 O. Savadogo, 'Emerging Membranes for Electrochemical Systems: (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems', J. New Mater. Electrochem. Syst., 1, 47 (1998)
32 A. Bessieres, M. Meireles, R. Coratger, J. Beauvillain, and V. Sanchez, 'Investigations of surface properties of polymeric membranes by near field microscopy', J. Membr. Sci., 109, 271 (1996)   DOI   ScienceOn
33 N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, 'Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterisation of polyethersulfone UF membranes with dopes containing different PVP', J. Membr. Sci., 187, 227 (2001)   DOI
34 X. Guo, J. Fang, T. Wateri, K. Tanaka, H. Kita, and K. Okamoto, 'Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid', Macromolecules, 35, 6707 (2002)   DOI   ScienceOn
35 C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and Benny D. Freeman, 'Water Sorption, Proton conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-2aminoethanesulfonic Acid (BES)', Macromolecules, 39, 755 (2006)   DOI   ScienceOn
36 Yexin Xu, Cuixian Chen, Pengxia Zhang, Benhui Sun, and Jiding Li, 'Pervaporation Properties of Polyimide Membranes for Separation of Ethanol + Water Mixtures', J. Chem. Eng. Data, 51, 1841 (2006)   DOI   ScienceOn