• Title/Summary/Keyword: 수소혼소

Search Result 27, Processing Time 0.02 seconds

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

An Experimental Study on the Performance and Emission Characteristics with Hydrogen Enrichment at Part Load Conditions Using a LPG Engine (LPG기관의 부분부하 조건에서 수소 혼합에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • Kim, Ingu;Kim, Kijong;Lee, Seangwock;Cho, Yongseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.242-248
    • /
    • 2013
  • The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in LPG engine and is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission and performance. An experimental study was carried out to obtain fundamental data for performance and emission characteristics of hydrogen enrichment in LPG engine. The research was held by changing the hydrogen ratio to 0, 5, 10, 20% in 1500rpm, bmep 2 and 4bar. The result turned out that the combustion duration was shortened due to fast flame propagation of hydrogen. And the amount of Carbon dioxide and Hydrocarbon decreased. However, the amount of NOX increased, which is thought to be the result of high adiabatic flame temperature of hydrogen. It has been confirmed that this phenomenon has changed by the Hydrogen mixing ratio.

An Experimental Study on NOx Emissions with Hydrogen and Natural gas Co-firing for EV burner of GT24 (GT24 가스터빈용 EV 버너의 수소혼소에 따른 질소산화물 배출 특성에 대한 실험적 연구)

  • Jeongjae Hwang;Won June Lee;Kyungwook Min;Do Won Kang;Han Seo Kim;Min Kuk Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.85-91
    • /
    • 2023
  • In this study, an experimental study was conducted on the flame behavior, combustion dynamics, and NOx emission characteristics for hydrogen co-firing with the EV burner which is the first stage combustor of GT24. It was confirmed that as the hydrogen co-firing rate increases, the NOx emission increases. This change was elucidate to be the result of a combination of changes in penetration depth due to changes in fuel density, reduction in fuel mixing due to changes in flame position due to increased flame propagation speed, and oscillation of fuel mixedness due to combustion instability. Through pressurization tests in the range of 1.3 to 3.1 bar, NOx emission characteristics under high-pressure operating conditions were predicted, and based on this, the hydrogen co-firing limits of the EV burner was evaluated.

A Study on Ammonia Reforming Catalyst and Reactor Design for 10 kW Class Ammonia-Hydrogen Dual-Fuel Engine (10 kW 급 암모니아-수소 혼소엔진을 위한 암모니아 개질 촉매 및 반응기 설계에 관한 연구)

  • LEE, SANGHO;CHOI, YOUNG;PARK, CHEOLWOONG;KIM, HONGSUK;LEE, YOUNG DUK;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.372-379
    • /
    • 2020
  • Ammonia-hydrogen dual-fuel engine is a way to reduce greenhouse gas emission because ammonia and hydrogen are carbon-free fuels. In ammonia-hydrogen dual-fuel engine, hydrogen is supplied to improve the combustion characteristic of ammonia. In this study, an ammonia reformer was developed to supply hydrogen for 10 kW class ammonia-hydrogen dual-fuel engine. Thermodynamic characteristic and catalyst were investigated for ammonia reforming. Heat transfer was important for high ammonia conversion of ammonia reformer. 99% of ammonia conversion was obtained when 10 LPM of ammonia and 610℃ of hot gas were supplied to the ammonia reformer.

A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine (수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구)

  • 채재우;한동성;이상만;전영남;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

Development of Economic Prediction Model for Internal Combustion Engine by Dual Fuel Generation (내연기관엔진의 가스혼소발전 경제성 예측모델 개발)

  • HUR, KWANG-BEOM;JANG, HYUCK-JUN;LEE, HYEONG-WON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.380-386
    • /
    • 2020
  • This paper represents an analysis of the economic impact of firing natural gas/diesel and natural gas/by-product oil mixtures in diesel engine power plants. The objects of analysis is a power plant with electricity generation capacity (300 kW). Using performance data of original diesel engines, the fuel consumption characteristics of the duel fuel engines were simulated. Then, economic assessment was carried out using the performance data and the net present value method. A special focus was given to the evaluation of fuel cost saving when firing natural gas/diesel and natural gas/by-product oil mixtures instead of the pure diesel firing case. Analyses were performed by assuming fuel price changes in the market as well as by using current prices. The analysis results showed that co-firing of natural gas/diesel and natural gas/by-product oil would provide considerable fuel cost saving, leading to meaningful economic benefits.

Numerical Study on Co-Combustion in Diesel Engine for Heavy-Duty Power Generation (발전용 대형 엔진 적용을 위한 천연가스-디젤 혼소에 대한 수치 해석적 연구)

  • SEO, DONG-KYUN;HUR, KWANG-BEOM;JEONG, YEONTAE;KIM, EUI-HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.369-376
    • /
    • 2015
  • Recently KEPCO, KOGAS and other institutions are jointly conducting an R&D for the development and demonstration of the power generation system based on a natural gas/diesel engine on an island. As a preliminary study, co-combustion in the dual fuel engine, which is expected to produce a few mega-watts of electricity, was modeled and calculated using computational fluid dynamics (CFD). The applied key assumptions are 2-dimensional axisymmetric, transient and static volume chemical reaction. Based on the selected blending ratio, which is the key operating condition, natural gas is substituted instead of diesel fuel (basis of high heating value). Results showed that as the blending ratio increases, the reaction rate of the combustion increases and thus maximum temperature is reached more rapidly. For the optimal performance, various geometric or operational studies will further be conducted.

Characteristics of Co-Combustion of Wood Pellet with Sub-Bituminus Coal in A Pilot CFB Combustor (Pilot 순환유동층 연소장치에서의 목재펠릿과 아역청탄 혼소 특성)

  • KIM, DONG WON;PARK, KYEONG IL;LEE, JONG MIN;BAE, YONG CHAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.436-447
    • /
    • 2019
  • The circulating fluidized bed boiler has an advantage that can burn a variety of fuels from low-grade fuel to coal. In this study, for the design of a circulating fluidized bed boiler using wood pellets, a circulating fluidized bed combustion test device using no external heater was manufactured and used. According to the increase of co-combustion rate with wood pellet, combustion fraction and heat flux by combustor height were measured and pollutant emission characteristics were analyzed. In terms of combustibility, the effect on primary and secondary air ratio were also studied. In addition, as a result of analysis of the effect of corrosive nanoparticles on the combustion of coal with wood pellets, it was confirmed that coal is mostly composed of Ca and S, whereas wood pellets are mostly composed of K, Cl, and Na.

A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen (수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구)

  • Bae, Jaeok;Choi, Minsu;Suh, Hyunuk;Jeon, Chunghwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.

The state-of-art of RDF technology and the development of RDF co-combustion technology at the coal power plant (폐기물고형연료(RDF) 기술 동향 및 석탄/RDF 혼소기술 개발)

  • Choi, Yeon-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.414-422
    • /
    • 2005
  • 유럽에서 RDF기술 확산 동향과 국가별 RDF사용 현황, 각국의 RDF품질표준 및 최근 유럽공통RDF품질표준화 추진현황을 소개하고 RDF사용처별 경제성분석 내용을 소개하였다. 소각로, 시멘트공장 및 석탄화력발전소에서 RDF를 사용할 경우에 열회수량은 시멘트공장이 다소 높게 나타났고 손익평가(cost benefit balance)는 석탄화력발전소가 가장 높게 나타났다. 국내에서 가동 중인 20MW급 순환유동층 석탄화력발전보일러에서 폐플라스틱고형연료(RPF)를 혼합연소하는 기술과 염화수소 및 다이옥신 측정내용을 소개하였다. 전염소량 0.4$\sim$0.6% RPF를 2.5%혼소 시 염화수소는 10ppmv 정도로 분석되었고 다이옥신은 0.003ng-TEQ/$Sm^3$으로 거의 검출이 되지 않았다.

  • PDF