스카른형 동명회중석광상(東明灰重石鑛床)은 조선계(朝鮮系) 대석회암통(大石灰岩統)에 대비되는 삼태산층(三台山層)과 이를 관입한 쥬라기 화강섬록암(花崗閃綠岩)과의 접촉대에 발달한 접촉교대광상(接觸交代鑛床)이다. 광화작용(鑛化作用)은 스카른시기 열수시기, 후기열수시기의 3회에 걸쳐 진행되었으며, 접촉부로부터 규회석, 투휘석, 투회석-석류석, 석류석, 베스비아나이트 스카른대(帶)가 불규칙한 대상분포(帶狀分布)한다. 회중석(灰重石)은 규회석스카른을 제외한 모든 스카른대(帶)와 열수시기초기 석영맥(石英脈)에서 산출되며, 특히 자류철석(磁硫鐵石), 방연석(方鉛石), 베스비아나이트와 밀접하게 공생(共生)한다. 즉 자류철석(磁硫鐵石)이 침전되면서 유리되 나온 수소(水素)이온은 모암인 석회암(石灰岩)과 반응(反應), 분리된 Ca이온의 활성도(活性度)가 증가되며 회중석(灰重石)이 침전된 것으로 사료된다. 한편 동명광산산(東明鑛山産) 주(主) 및 부성분(副成分) 유화광물(硫化鑛物)을 대상으로한 물성(物性)실험 연구를 통하여, 광화시기(鑛化時期) 및 광물(鑛物)의 내부반사(內部反射)현상에 따른 반사도(反射度) 미경도(微硬度)의 상관성을 검토하고 광학적(光學的) 대칭성(對稱性)을 연구하여 황동석과 벡철석은 2축성(軸性)(-), 반동석은 2축성(軸性)(+)임을 밝혔으며 유비철석은 2축성(軸性)이나 대칭성(對稱性)을 결정할 수 없었다. 미경도(微硬度)실험에서는 경도(硬度)가 낮은 광물일수록 하중에 따른 미경도(微硬度)값의 변화경향이 적으며, 실험된 광물은 모두 특징적인 indentation을 보여 광물감정에 이용될 수 있을 것으로 고려된다.
바나듐 레독스 흐름 전지 (Vanadium redox flow battery, VRB) 시스템 운전 중 양이온 교환막을 통한 바나듐이온의 투과로 인하여 성능이 저하되는 문제점을 보완하기 위해 판상형태의 탄소물질인 산화그라핀 (Graphene Oxide, GO)을 기존에 사용하였던 양이온 교환막인 Nafion 양이온 교환막 표면에 열압착 방식으로 코팅하여 양이온 교환막 개선 및 VRB 성능 향상을 도모하였다. 개선된 양이온 교환막의 물리화학적 특성분석을 위하여 SEM (Scanning Electron Microscopy)분석, 이온 교환 용량, 수분 흡수 및 수소이온 전도도를 측정하였다. 산화그라핀층을 코팅한 결과, SEM 분석을 통해 양이온 교환막 표면에 약 $0.93{\mu}m$의 산화그라핀층이 형성된 것을 확인할 수 있었다. 산화그라핀을 코팅하여 개선된 양이온 교환막의 수소이온 전도도 측정 결과, 상용 양이온 교환막의 27% 수준으로 감소하였음을 확인하였으며, 동시에 바나듐이온 투과실험을 실시한 결과, 개선된 양이온 교환막의 바나듐이온 투과도가 기존 상용 양이온 교환막의 25% 이하 수준으로 감소하였음을 확인할 수 있었다. VRB 단위전지 성능실험을 실시하여 충-방전 특성을 분석한 결과, 산화그라핀을 코팅하여 개선된 양이온 교환막을 VRB 시스템에 적용하였을 경우, 바나듐이온의 투과도 감소로 인하여 쿨롱효율이 증가하였음을 확인할 수 있었고, 그로 인하여 전체적인 에너지효율이 상용막을 적용하였을 때 보다 증가하였음을 확인할 수 있었다. 따라서, 본 연구를 통해 양이온 교환막 표면에 판상형태의 탄소물질인 산화그라핀을 코팅하는 방법이 바나듐이온 투과도를 저하시키고 VRB의 시스템성능을 향상시킬 수 있는 효과적인 방법임을 제시할 수 있었다.
HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전기투석을 시판의 양이온교환막(CMB)을 이용하여 요오드의 존재하에 실험을 진행하였다. 수소이온 투과의 선택성을 증가시키기 위해, 막은 전자선 가속기를 이용하여 방사선 처리하였다. 방사선 처리한 막의 막특성(막 저항, 이온교환용량, 함수율)을 측정하였다. 각각의 방사선량에서 처리한 막의 2 $mol/dm^3$의 KCl 용액에서 막저항, 이온교환용량과 함수율은 처리하지 않은 막과 거의 동등의 값을 가졌다. HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전투기투석을 $75^{\circ}C$, 9.6 $A/dm^2$에서 진행하였다. 전자선 가속기에 의해 방사선 처리한 양이온교환막은 처리하지 않은 막과 비교하여 고분자의 가교구조와 함께 수소이온투과의 높은 선택성을 가졌다.
Adipic acid에 대해 저항성을 갖도록 변이된 Leuconostoc paramesenteroides (ANaP100) 균주의 내산성 특성을 조사하기 위하여 수소이온 투과도, $H^+-ATPase$ 활성, $Mg^{++}$ 해리도, 원형질막의 지방산 조성을 지표로 삼아 야생균주(LPw)와 비교하였다. 수소이온 투과도의 경우 pH 5에서 $t_{1/2}$ 값이 LPw는 4.3분, ANaP100은 4.8분으로서 변이균주가 다소 내산성이 높았으며 $H^+-ATPase$ 활성은 maximal activity가 Leu. paramesenteroides는 모두 pH 6.0에서 가장 높았고 LPw는 0.59 unit/mg protein, 변이균주는 0.63 unit/mg protein으로서 ANaP100이 LPw보다 활성이 높았다. 세포막의 산 손상(acid damage)에 의한 $Mg^{++}$ 해리도에서도 pH 4.0에서 2시간 경과 후 LPw는 52.2%, ANaP100은 27.3%로서 LPw에 비해 약 1/2가량 $Mg^{++}$이 적게 유출되어 산에 의한 세포막의 손상이 적었다. 원형질막의 지방산 조성은 ANaP100가 $C_{18:1}$은 감소하고, $C_{19:0,\;cyclo}$는 증가하여 내산성이 증대되었으며 또한 adipic acid 첨가시에도 LPw에 비해 우수한 증식을 보였다. 따라서 ANaP100이 LPw에 비해 내산성이 증가되었으며 adipic acid 저항성도 함유하는 것이 확인되었다.
본 연구에서는 polyvinylalcohol(PVA)의 hydroxyl 작용기와 sulfosuccinic acid (SSA)의 carboxylic acid 작용기의 반응을 통하여 열가교된 PVA막을 제조하였다. 설폰산기를 함유한 SSA는 PVA 매트릭스에 대한 가교제의 역할뿐만 아니라 수소이온의 전도도를 높이는 역할 모두를 수행하였다. PVA의 가교도(degree of crosslinking)는 SSA의 함량으로 조절하였고 가교밀도(crosslinking density)는 극성 및 비극성 용매를 이용하여 계산하였다. Xylene 및 benzene과 같은 비극성 용매를 사용한 경우 가교밀도는 SSA함량에 따라 증가하였다. 그러나, 물과 methanol과 같은 극성 용매를 사용한 경우 가교밀도는 SSA함량 20%까지 증가하다가 그 이상의 함량에서는 설폰산기의 영향으로 감소하였다. 가교도와 확산계수, 기계적 물성 및 전도도, 메탄올 투과도 등에 대한 PVA막의 특성을 평가하였고 이들 특성은 SSA함량에 의존하였다.
그래핀(Graphene)은 원자 한 층 두께의 얇은 특성에 기인하여 우수한 투과도(~97.3%)를 나타내며, 높은 전자 이동도($200,000cm^2V^{-1}s^{-1}$)로 인하여 전기 전도도가 우수한 2차원 전자소재이다. 또한 유연하고 우수한 기계적 물성을 가지고 있어 실제로 다양한 소자에서 활용되고 있다. 그래핀을 이용하여 다양한 소자로 응용하기 위한 과정 중 하나인 포토리소그래피 공정(Photolithography process)은 원하는 패턴을 만들기 위해 제작하고자 하는 기판 위에 포토레지스트(Photoresist)를 코팅하는 과정을 거치게 된다. 하지만 이러한 과정은 소자 제작에 있어서 포토레지스트 잔여물을 남기게 된다. 그래핀 위에 남은 포토레지스트 잔여물은 그래핀의 우수한 전기적 특성을 저하시켜 소자특성에 불이익을 주게 된다. 본 연구에서는 수소 플라즈마를 이용하여 그래핀 위에 남은 중합체(Polymer) 잔여물을 제거한다. 사용한 그래핀은 화학 기상 증착법(Chemical vapor deposition)을 이용하여 성장시켰으며, PMMA(Poly(methyl methacrylate))를 이용하여 이산화규소(silicon dioxide) 기판에 전사하였다. 그래핀의 손상 없이 중합체 잔여물을 제거하기 위해 플라즈마 처리시간을 15초부터 1분까지 늘려가며 연구를 진행하였으며, 플라즈마 처리 시간에 따른 중합체 잔여물의 제거 정도와 그래핀의 보존 여부를 확인하기 위해 라만 분광법(Raman spectroscopy)과 원자간력현미경(Atomic force microscopy)을 사용하였다. 본 연구 결과를 통해 간단한 플라즈마 처리로 보다 나은 특성의 그래핀 소자를 얻게 됨으로써, 향상된 특성을 가진 그래핀 소자로 산업적 응용 가능성을 높일 수 있을 것이라 생각된다.
본 연구에서는 Plasma damage-free 선형 대향 타겟 스퍼터(Linear Facing Target sputtering: LFTS) 시스템을 이용하여 성막시킨 GaN-LED의 투명전극용 Ga-doped ZnO (GZO) 박막의 특성을 연구하였다. LFTS 시스템을 이용한 GZO 성막 공정 중 LED소자의 플라즈마 노출에 의한 데미지를 최소화 하기 위해 일정한 타겟간 거리(Target-to-Target distance: 65 mm)에서 타겟과 기판간 거리(Target-to-Substrate distance)를 50 mm에서 120 mm로 변화시키며 GZO 투명 전극을 성막해 박막의 특성과 소자의 특성을 동시에 분석하였다. LFTS에서 플라즈마는 GZO 타겟 사이에 형성된 일방향의 자장에 의해 효과적으로 구속되기 때문에 기판과 타겟 거리를 최적화 할 경우 플라즈마 데미지를 최소화하며 GaN-LED의 제작이 가능하다. 기판과 타겟 사이의 거리가 120 mm에서 최적화된 200 nm 두께의 GZO 투명 전극은 DC 파워 250 W, 공정 압력 0.3 mTorr, Ar 20 sccm 실험 조건하에서 LED 소자 위해 성막되었으며, 이후 $600^{\circ}C$ 수소 분위기에서 1분간 급속 열처리하였고 면저항(37 Ohm/sq.)과 450 nm 파장에서의 투과도(83%)를 나타냄을 확인할 수 있었다. LED 소자와 타겟 사이의 거리가 50 mm에서 120 mm로 증가할수록 성막공정 중 LED 소자에 미치는 플라즈마 데미지의 감소로 인해 GaN-LED 소자의 turn on voltage가 8.2 V에서 3.4 V로 감소한 것을 확인하였으며, 또한 radiant intensity는 20 mA의 전류를 인가하였을 시 0.02 mW/sr에서 8 mW/sr로 400배 향상되었다. 이러한 소자 특성은 대향 타겟 스퍼터 시스템으로 성장시킨 GZO 투명전극이 LED 소자의 투명 전극 층(Transparent Conductive Layer: TCL)에 적용될 수 있음을 말해준다.
본 연구에서 고투과도를 갖는 실리카 분리막은 콜로이달 실리카 졸과 고분자형 실리카 졸 두 가지를 DRFF법과 SRFF법으로 다공성 금속 지지체 위에 코팅하여 제조되었다. 실리카 졸은 졸-겔법으로 테트라에톡시실란(TEOS)에 의하여 제조되었고, 각각의 졸은 동적광산란법(DLS), 전계방사 주사전자현미경(FE-SEM), 질소 흡착법 등을 이용하여 그 특성을 평가하였다. 다공성 금속 지지체위에 콜로이달 실리카 졸로 중간층을 형성하여 치밀한 구조의 실리카 층을 형성한 후 그 위에 분리층으로 고분자형 실리카 졸을 코팅하여 핀홀을 줄이는 방법으로 기체분리용 분리막을 제조하였다. FE-SEM으로 분리막의 코팅 층을 분석한 결과 분리층은 중간층보다 침밀한 구조를 가지고 있음을 확인하였고 기체투과 결과 수소 투과도 $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ 분포를 보였다.
최근에 대용량 에너지 저장 시스템으로 레독스 흐름전지(Redox Flow Battery, RFB)가 활발히 연구 개발되고 있다. 불소계막을 대신할 저가의 탄화수소막이 RFB막으로 주목받고 있다. 본 연구에서는 Poly(arylene ether sulfone) (PAES) 막을 사용해 고가의 불소계막과 그 특성을 바나듐 레독스 흐름전지(VRB, Vanadium Redox Flow Battery)조건에서 비교하였다. 바나듐 이온투과도, 이온 교환 용량, OCV 변화, 팽윤, 충 방전 곡선, 에너지 효율 등을 측정했다. PAES 막은 Nafion 117막에 비해 바나듐 이온투과도가 낮고, 이온교환용량은 커서 Nafion 117을 사용한 RFB보다 에너지 효율이 높았다.
PTMSP에 $0{\sim}20$ wt% PMMH dendrimer 나노입자를 가하여 PTMSP/PMMH dendrimer 복합막을 제조하였다. 복합막의 기체 투과특성에 미치는 PMMH denimer의 영향을 조사하였다. $H_2,\;N_2,\;CO_2,\;CH_4$의 투과도는 PTMSP 내 PMMH endrimer의 함량이 증가하면서 감소하였다. PTMSP/PMMH dendrimer 복합막에서 수소를 제외한 다른 기체들의 투과도 순서는 $N_2\;<\;CH_4\;<\;CO_2$이며, 이것은 기체의 임계온도의 순서 $N_2\;<\;CH_4 <\;CO_2$와 일치하고 있다. $N_2$에 대한 기체의 선택도는 PTMSP 내의 PMMH denimer의 함량이 증가하면서 증가하였다. $CO_2/N_2$ 선택도는 5.6에서 16.9로 증가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.