DOI QR코드

DOI QR Code

Preparation and Gas Permeation Properties of Silica Membranes on Porous Stainless Steel-Tube Supports

다공성 금속 지지체에 제조된 실리카 분리막의 기체 투과 특성

  • Lee, Hye Ryeon (Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Seo, Bongkuk (Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT))
  • 이혜련 (한국화학연구원 그린정밀화학연구센터) ;
  • 서봉국 (한국화학연구원 그린정밀화학연구센터)
  • Received : 2014.01.08
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

Silica membranes with high permeability were prepared using colloidal and polymeric silica sols on a porous stainless steel-tube support by a DRFF and SRFF method. Silica sols were derived with tetraethylorthosilicate (TEOS) by sol-gel method and analyzed with DLS, FE-SEM, and $N_2$ adsorption. The coating of the intermediate layer with colloidal silica sol on the stainless steel-tube support led to a denser surface morphology of the membrane along with a considerable reduction in the number of surface defect. As the polymeric silica sol enclosed the colloidal silica sol with spherical particles during the SRFF method, the separation-layer-coated silica membrane showed a denser surface than the intermediate layer. Moreover, the silica membranes showed high hydrogen gas permeability of $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ with low $H_2/N_2$ perm-selectivity (2.9-3.1) at room temperatures.

본 연구에서 고투과도를 갖는 실리카 분리막은 콜로이달 실리카 졸과 고분자형 실리카 졸 두 가지를 DRFF법과 SRFF법으로 다공성 금속 지지체 위에 코팅하여 제조되었다. 실리카 졸은 졸-겔법으로 테트라에톡시실란(TEOS)에 의하여 제조되었고, 각각의 졸은 동적광산란법(DLS), 전계방사 주사전자현미경(FE-SEM), 질소 흡착법 등을 이용하여 그 특성을 평가하였다. 다공성 금속 지지체위에 콜로이달 실리카 졸로 중간층을 형성하여 치밀한 구조의 실리카 층을 형성한 후 그 위에 분리층으로 고분자형 실리카 졸을 코팅하여 핀홀을 줄이는 방법으로 기체분리용 분리막을 제조하였다. FE-SEM으로 분리막의 코팅 층을 분석한 결과 분리층은 중간층보다 침밀한 구조를 가지고 있음을 확인하였고 기체투과 결과 수소 투과도 $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ 분포를 보였다.

Keywords

References

  1. S. J. Khatib, S. T. Oyama, K. R. de Souza, and F. B. Noronha, "Review of silica membranes for hydrogen separation prepared by chemical vapor deposition", Membr. Sci. Tech., 14, 25 (2011). https://doi.org/10.1016/B978-0-444-53728-7.00002-1
  2. S. S. Gopalakrishnan and J. C. D. da Costa, "Hydrogen gas mixture separation by CVD silica membrane", J. Membr. Sci., 323, 144 (2008). https://doi.org/10.1016/j.memsci.2008.06.016
  3. D. Lee and S. T. Oyama, "Gas permeation characteristics of a hydrogen selective supported silica membranes", J. Membr. Sci., 210, 291 (2002). https://doi.org/10.1016/S0376-7388(02)00389-7
  4. N. Benes, A. Nijmeijer, and H. Verweij, "Microporous silica membranes", Membr. Sci. Tech., 6, 335 (2000). https://doi.org/10.1016/S0927-5193(00)80015-7
  5. R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998). https://doi.org/10.1126/science.279.5357.1710
  6. R. M. de Vos and H. Verweij, "Improved performance of silica membranes for gas separation", J. Membr. Sci., 143, 37 (1998). https://doi.org/10.1016/S0376-7388(97)00334-7
  7. T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-gel Sci. Technol., 46, 349 (2008). https://doi.org/10.1007/s10971-008-1712-5
  8. M. W. J. Luiten, N. E. Benes, C. Huiskes, H. Kruidhof, and A. Nijmeijer, "Robust method for micro-porous silica membrane fabrication", J. Membr. Sci., 348, 1 (2010). https://doi.org/10.1016/j.memsci.2009.11.029
  9. H. R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, and T. Tsuru, "Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation", J. Membr. Sci., 383, 152 (2011). https://doi.org/10.1016/j.memsci.2011.08.046
  10. H. R. Lee, B. Seo, and Y. -J. Choi, "Control of nano-structure of ceramic membrane and its application", Membrane Journal, 22, 77 (2012).
  11. B. Sea, D.-W. Lee, and K.-H. Lee, "Synthesis of silica/alumina composite membrane using sol-gel and CVD method for hydrogen purification at high temperature", Membrane Journal, 11, 124 (2001).
  12. N. K. Raman and C. J. Brinker, "Organic "template" approach to molecular sieving silica membranes", J. Membr. Sci., 105, 273 (1995). https://doi.org/10.1016/0376-7388(95)00067-M
  13. R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, 277 (1999). https://doi.org/10.1016/S0376-7388(99)00035-6
  14. M. C. Duke, J. C. D. da Costa, G. Q. Lu, M. Petch, and P. Gray, "Carbonised template molecular sieving silica membranes in fuel processing systems: permeation, hydrostability and regeneration", J. Membr. Sci., 241, 325 (2004). https://doi.org/10.1016/j.memsci.2004.06.004
  15. J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pexn and J. F. Vente, "Long-term pervaporation performance of microporous methylated silica membranes", Chem. Commun., 40, 834 (2004).
  16. Y.-S. Kim, K. Kusakabe, S. Morooka, and S.-M. Yang, "Preparation of microporous silica membranes for gas separation", Korean J. Chem. Eng., 18, 106 (2001). https://doi.org/10.1007/BF02707206
  17. K. Kusakabe, S. Sakamoto, T. Saie, and S. Morooka, "Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkytriethoxysilanes", Sep. Purif. Technol., 16, 139 (1999). https://doi.org/10.1016/S1383-5866(98)00120-8
  18. B.-K. Sea, M. Watanabe, K. Kusakabe, S. Morooka, and S.-S. Kim, "Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery form a mixture containing steam", Gas. Sep. Purif., 10, 187 (1996). https://doi.org/10.1016/0950-4214(96)00020-5
  19. B.-K. Sea, K. Kusakabe, and S. Morooka, "Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall", J. Membr. Sci., 130, 41 (1997). https://doi.org/10.1016/S0376-7388(97)00002-1
  20. M. Nomura, T. Nagayo, and K. Monma, "Pore size control of a molecular sieve silica membrane prepared by a counter diffusion CVD method", J. Chem. Eng. Japan, 40, 1235 (2007). https://doi.org/10.1252/jcej.07WE065
  21. Y. Ohta, K. Akamatsu, T. Sugawara, A. Nakao, A. Miyoshi, and S.-I. Nakao, "Development of pore size-controlled silica membranes for gas separation by chemical vapor deposition", J. Membr. Sci., 315, 93 (2008). https://doi.org/10.1016/j.memsci.2008.02.008
  22. H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "Hydrothermally stable molecular separation membranes from organically linked silica", J. Mater. Chem., 18, 2150 (2008). https://doi.org/10.1039/b801972j
  23. H. L. Catricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability", J. Membr. Sci., 324, 111 (2008). https://doi.org/10.1016/j.memsci.2008.07.014
  24. R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, "Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols", Chem. Sus. Chem., 2, 158 (2009). https://doi.org/10.1002/cssc.200800198
  25. M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability, J. Am. Chem. Soc., 131, 414 (2009). https://doi.org/10.1021/ja806762q
  26. M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size: Preparation and gas permeation characteristics, J. Membr. Sci., 348, 310 (2010). https://doi.org/10.1016/j.memsci.2009.11.014
  27. H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation, AIChE J., 57, 2755 (2011). https://doi.org/10.1002/aic.12501
  28. M. Kanezashi, T. Shioda, T. Gunji, and T. Tsuru, Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane, AIChE J., 58, 1733 (2012). https://doi.org/10.1002/aic.12716
  29. D.-W. Lee, S.-E. Nam, B.-K. Sea, S.-K. Ihm, and K.-H. Lee, Permeation behavior of a H2/CO gaseous mixture through Pt-included composited membranes, J. Membr. Sci., 243, 243 (2004). https://doi.org/10.1016/j.memsci.2004.06.027
  30. D.-W. Lee, Y.-G. Lee, B.-K. Sea, S.-K. Ihm, and K.-H. Lee, Improvement in thermal stability of stainless steel supported silica membranes by the soaking-rolling method, J. Membr. Sci., 236, 53 (2004). https://doi.org/10.1016/j.memsci.2004.01.027
  31. D.-W. Lee, S.-J. Park, C.-Y. Yu, S.-K. Ihm, and K.-H. Lee, Novel synthesis of a porous stainless steel-supported Knudsen membrane with remarkably high permeability, J. Membr. Sci., 302, 265 (2007). https://doi.org/10.1016/j.memsci.2007.06.054