Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.177

Preparation and Gas Permeation Properties of Silica Membranes on Porous Stainless Steel-Tube Supports  

Lee, Hye Ryeon (Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT))
Seo, Bongkuk (Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Membrane Journal / v.24, no.3, 2014 , pp. 177-184 More about this Journal
Abstract
Silica membranes with high permeability were prepared using colloidal and polymeric silica sols on a porous stainless steel-tube support by a DRFF and SRFF method. Silica sols were derived with tetraethylorthosilicate (TEOS) by sol-gel method and analyzed with DLS, FE-SEM, and $N_2$ adsorption. The coating of the intermediate layer with colloidal silica sol on the stainless steel-tube support led to a denser surface morphology of the membrane along with a considerable reduction in the number of surface defect. As the polymeric silica sol enclosed the colloidal silica sol with spherical particles during the SRFF method, the separation-layer-coated silica membrane showed a denser surface than the intermediate layer. Moreover, the silica membranes showed high hydrogen gas permeability of $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ with low $H_2/N_2$ perm-selectivity (2.9-3.1) at room temperatures.
Keywords
Sol-gel technique; $SiO_2$ sol; Mesoporous membrane; Gas separation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. J. Khatib, S. T. Oyama, K. R. de Souza, and F. B. Noronha, "Review of silica membranes for hydrogen separation prepared by chemical vapor deposition", Membr. Sci. Tech., 14, 25 (2011).   DOI
2 S. S. Gopalakrishnan and J. C. D. da Costa, "Hydrogen gas mixture separation by CVD silica membrane", J. Membr. Sci., 323, 144 (2008).   DOI
3 D. Lee and S. T. Oyama, "Gas permeation characteristics of a hydrogen selective supported silica membranes", J. Membr. Sci., 210, 291 (2002).   DOI   ScienceOn
4 N. Benes, A. Nijmeijer, and H. Verweij, "Microporous silica membranes", Membr. Sci. Tech., 6, 335 (2000).   DOI
5 R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998).   DOI   ScienceOn
6 R. M. de Vos and H. Verweij, "Improved performance of silica membranes for gas separation", J. Membr. Sci., 143, 37 (1998).   DOI
7 T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-gel Sci. Technol., 46, 349 (2008).   DOI   ScienceOn
8 M. W. J. Luiten, N. E. Benes, C. Huiskes, H. Kruidhof, and A. Nijmeijer, "Robust method for micro-porous silica membrane fabrication", J. Membr. Sci., 348, 1 (2010).   DOI
9 H. R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, and T. Tsuru, "Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation", J. Membr. Sci., 383, 152 (2011).   DOI
10 H. R. Lee, B. Seo, and Y. -J. Choi, "Control of nano-structure of ceramic membrane and its application", Membrane Journal, 22, 77 (2012).
11 B. Sea, D.-W. Lee, and K.-H. Lee, "Synthesis of silica/alumina composite membrane using sol-gel and CVD method for hydrogen purification at high temperature", Membrane Journal, 11, 124 (2001).
12 N. K. Raman and C. J. Brinker, "Organic "template" approach to molecular sieving silica membranes", J. Membr. Sci., 105, 273 (1995).   DOI   ScienceOn
13 R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, 277 (1999).   DOI
14 K. Kusakabe, S. Sakamoto, T. Saie, and S. Morooka, "Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkytriethoxysilanes", Sep. Purif. Technol., 16, 139 (1999).   DOI   ScienceOn
15 M. C. Duke, J. C. D. da Costa, G. Q. Lu, M. Petch, and P. Gray, "Carbonised template molecular sieving silica membranes in fuel processing systems: permeation, hydrostability and regeneration", J. Membr. Sci., 241, 325 (2004).   DOI   ScienceOn
16 J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pexn and J. F. Vente, "Long-term pervaporation performance of microporous methylated silica membranes", Chem. Commun., 40, 834 (2004).
17 Y.-S. Kim, K. Kusakabe, S. Morooka, and S.-M. Yang, "Preparation of microporous silica membranes for gas separation", Korean J. Chem. Eng., 18, 106 (2001).   DOI   ScienceOn
18 B.-K. Sea, M. Watanabe, K. Kusakabe, S. Morooka, and S.-S. Kim, "Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery form a mixture containing steam", Gas. Sep. Purif., 10, 187 (1996).   DOI
19 B.-K. Sea, K. Kusakabe, and S. Morooka, "Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall", J. Membr. Sci., 130, 41 (1997).   DOI
20 M. Nomura, T. Nagayo, and K. Monma, "Pore size control of a molecular sieve silica membrane prepared by a counter diffusion CVD method", J. Chem. Eng. Japan, 40, 1235 (2007).   DOI
21 Y. Ohta, K. Akamatsu, T. Sugawara, A. Nakao, A. Miyoshi, and S.-I. Nakao, "Development of pore size-controlled silica membranes for gas separation by chemical vapor deposition", J. Membr. Sci., 315, 93 (2008).   DOI
22 H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "Hydrothermally stable molecular separation membranes from organically linked silica", J. Mater. Chem., 18, 2150 (2008).   DOI   ScienceOn
23 M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size: Preparation and gas permeation characteristics, J. Membr. Sci., 348, 310 (2010).   DOI
24 H. L. Catricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability", J. Membr. Sci., 324, 111 (2008).   DOI
25 R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, "Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols", Chem. Sus. Chem., 2, 158 (2009).   DOI   ScienceOn
26 M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability, J. Am. Chem. Soc., 131, 414 (2009).   DOI   ScienceOn
27 H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation, AIChE J., 57, 2755 (2011).   DOI   ScienceOn
28 M. Kanezashi, T. Shioda, T. Gunji, and T. Tsuru, Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane, AIChE J., 58, 1733 (2012).   DOI
29 D.-W. Lee, S.-E. Nam, B.-K. Sea, S.-K. Ihm, and K.-H. Lee, Permeation behavior of a H2/CO gaseous mixture through Pt-included composited membranes, J. Membr. Sci., 243, 243 (2004).   DOI
30 D.-W. Lee, Y.-G. Lee, B.-K. Sea, S.-K. Ihm, and K.-H. Lee, Improvement in thermal stability of stainless steel supported silica membranes by the soaking-rolling method, J. Membr. Sci., 236, 53 (2004).   DOI
31 D.-W. Lee, S.-J. Park, C.-Y. Yu, S.-K. Ihm, and K.-H. Lee, Novel synthesis of a porous stainless steel-supported Knudsen membrane with remarkably high permeability, J. Membr. Sci., 302, 265 (2007).   DOI   ScienceOn