• Title/Summary/Keyword: 수소충전

Search Result 256, Processing Time 0.027 seconds

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.

Experimental Study on the Structural Integrity of Type IV Hydrogen Pressure Vessels Experienced Impact Loadings (충격 하중 조건에서의 Type IV 수소 압력용기 구조건전성 분석)

  • Han, Min-Gu;Jung, Kyung-Chae;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.60-65
    • /
    • 2016
  • In this paper, finite element analysis and real time monitoring experimental work using FBG sensor were carried out for analyzing structural integrity of a Type IV hydrogen pressure vessel under impact loading condition. By using finite element analysis with the ply based modeling technique, sensor insertion points and pressure condition were suggested. Tensile test with an angle ply specimen was conducted for getting the reliability of FBG sensor insertion method. After fabricating the vessel, total five times pressurization fatigue tests were conducted (Non-impact pressurization: 1, After impact pressurization: 4). Experimental results revealed that filling cycle time was gradually increased and filling gradient was decreased when the vessel experienced impact.

Analysis on the Explosion Risk Characteristic of Hydrogen blended Natural Gas (HCNG 혼합연료의 폭발 위험 특성 분석)

  • Kang, Seung-Kyu;Kim, Young-Gu;Kwon, Jeong-Rak
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2014
  • This study investigated the explosion characteristics of HCNG fuel using a simulation tool. The damage caused by the storage container explosion and vapor cloud explosion in a gas station was predicted. In case of an vapor cloud explosion in the HCNG station, 50~200kPa explosion pressure was predicted inside the station. When the cylinder explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. The damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

A Study on Crack of Hydrogen Filling Pressure Vessel Using Finite Element Method (유한요소법을 이용한 수소충전용 압력용기의 균열에 관한 연구)

  • Ha Young Choi;Sung Kwang Byon;Seunghyun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.116-122
    • /
    • 2023
  • As the number of hydrogen filling stations for hydrogen supply increases with the progress of low-carbon eco-friendly energy policies, the risk of accidents is also increasing. Actual pressure vessels may have defects such as notches, pores, and inclusions that may occur during the manufacturing process. Therefore, it is necessary to evaluate the integrity of pressure vessels in the case where cracks exist in pressure vessels under internal pressure. In this paper, 3D finite element analysis was used to evaluate the structural safety of hydrogen-filled pressure vessels with surface cracks, and the shape of surface cracks was compared with the commonly used semi-elliptical shape. In the future, these results will be used to predict the remaining life of the pressure vessel in consideration of fracture mechanics.

Development of Web3D-based Virtual Reality System for Hydrogen Station (웹 3D 기술을 사용한 수소충전소 가상체험교육시스템 제작)

  • Yoon, Jong-Chul;Kwon, Ji-Yong;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.2
    • /
    • pp.35-40
    • /
    • 2009
  • In this paper, we present the web3D-based virtual reality(VR) system for the safety education of the hydrogen station. Currently, hydrogen is considered the next generation energy, and hydrogen station is a part of core infrastructure in hydrogen industry. However, the experience of safety equipment in the hydrogen station is limited to the non-experts, because it is a restricted area in general industry. Therefore, using the event driven method, we develop the VR system to transfer the information of hydrogen station to the non-experts. Using our system, user experiences the safety concerns in the hydrogen station, and also learn the informations of hydrogen energy.

  • PDF

A Study on the Quantitative Risk Assessment of Hydrogen-LPG Combined Refueling Station (수소-LPG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung Kyu
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a quantitative risk assessment was carried out for a hydrogen complex station. The complex fueling station to be evaluated was hydrogen-LPG, and the components of each station were analyzed and the risk was evaluated. The final risk is assessed by individual and societal risks, taking into account the impact of damage and the frequency of accidents. As a result of individual risk calculation for the hydrogen-LPG fueling station that is the subject of this study, the hydrogen-LPG type fueling station does not show the unacceptable hazardous area (> 1 × 10E-3) proposed by HSE. The level of individual risk for both the public and the worker is within acceptable limits. In societal risk assessment, the model to be interpreted shows the distribution of risks in an acceptable range(ALARP, As Low As Reasonably Practicable). To ensure improved safety, we recommend regular inspections and checks for high-risk hydrogen reservoirs, dispensers, tube trailer leaks, and LPG vapor recovery lines.

Risk Assessment of Stationary Hydrogen Refueling Station by Section in Dispenser Module (고정식 수소충전소에서의 Dispenser Module 내 구역별 위험성 평가)

  • SangJin Lim;MinGi Kim;Su Kim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.76-85
    • /
    • 2023
  • Demand for hydrogen as a renewable energy resource is increasing. However, unlike conventional fossil fuels, hydrogen requires a dedicated refueling station for fuel supply. A risk assessment of hydrogen refueling stations must be undertaken to secure the infrastructure. Therefore, in this study, a risk assessment for hydrogen refueling stations was conducted through both qualitative and quantitative risk assessments. For the qualitative evaluation, the hydrogen dispenser module was evaluated as two nodes using the hazard and operability (HAZOP) analysis. The risk due to filter clogging and high-pressure accidents was evaluated to be high according to the criticality estimation matrix. For the quantitative risk assessment, the Hydrogen Korea Risk Assessment Module (Hy-KoRAM) was used to indicate the shape of the fire and the range of damage impact, and to evaluate the individual and social risks. The individual risk level was determined of to be as low as reasonably practicable (ALARP). Additional safety measures proposed include placing the hydrogen refueling station about 100m away from public facilities. The social risk level was derived as 1E-04/year, with a frequency of approximately 10 deaths, falling within the ALARP range. As a result of the qualitative and quantitative risk assessments, additional safety measures for the process and a safety improvement plan are proposed through the establishment of a restricted area near the hydrogen refueling station.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations (수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용)

  • YUN, SEUNGGWAN;CHO, HYUNGTAE;KIM, MYUNGJUN;LEE, JAEWON;KIM, JUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.

A Study on the Safety of Liquefied Hydrogen Refueling Station through Quantitative Risk Assessment (정량적 위험성평가를 통한 액화수소충전소 안전성 고찰)

  • Woo-Il Park;Seung-Kyu Kang;In-Woo Lee;Yun-Young Yang;Chul-Hee Yu
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • In addition to analyzing the hydrogen economy trends of the international community (Korea, the United States, Europe, Japan, etc.), which is being promoted to realize a carbon-neutral society, this study compared and analyzed the differences between the gaseous hydrogen refueling station, which is a key hydrogen-using facility close to the people, and a liquefied hydrogen refueling station that is scheduled to be built in the future. In addition, SAFETI, a quantitative risk assessment program, was used to analyze the safety of liquefied hydrogen refueling stations and In consideration of the individual and societal risks and the ranking of risks by facility, which are conditional allowable areas, a plan to improve safety such as facility layout was proposed