DOI QR코드

DOI QR Code

Risk Assessment of Stationary Hydrogen Refueling Station by Section in Dispenser Module

고정식 수소충전소에서의 Dispenser Module 내 구역별 위험성 평가

  • SangJin Lim (Department of Marine System Engineering, Graduate School of Mokpo National Maritime University) ;
  • MinGi Kim (Daesung Powertec Co.,Ltd) ;
  • Su Kim (Department of Marine System Engineering, Graduate School of Mokpo National Maritime University) ;
  • YoonHo Lee (Division of Coast Guard, Mokpo National Maritime University)
  • 임상진 (목포해양대학교 기관시스템공학과 대학원) ;
  • 김민기 (대성파워텍) ;
  • 김수 (목포해양대학교 기관시스템공학과 대학원) ;
  • 이윤호 (목포해양대학교 해양경찰학부)
  • Received : 2023.01.31
  • Accepted : 2023.02.24
  • Published : 2023.02.28

Abstract

Demand for hydrogen as a renewable energy resource is increasing. However, unlike conventional fossil fuels, hydrogen requires a dedicated refueling station for fuel supply. A risk assessment of hydrogen refueling stations must be undertaken to secure the infrastructure. Therefore, in this study, a risk assessment for hydrogen refueling stations was conducted through both qualitative and quantitative risk assessments. For the qualitative evaluation, the hydrogen dispenser module was evaluated as two nodes using the hazard and operability (HAZOP) analysis. The risk due to filter clogging and high-pressure accidents was evaluated to be high according to the criticality estimation matrix. For the quantitative risk assessment, the Hydrogen Korea Risk Assessment Module (Hy-KoRAM) was used to indicate the shape of the fire and the range of damage impact, and to evaluate the individual and social risks. The individual risk level was determined of to be as low as reasonably practicable (ALARP). Additional safety measures proposed include placing the hydrogen refueling station about 100m away from public facilities. The social risk level was derived as 1E-04/year, with a frequency of approximately 10 deaths, falling within the ALARP range. As a result of the qualitative and quantitative risk assessments, additional safety measures for the process and a safety improvement plan are proposed through the establishment of a restricted area near the hydrogen refueling station.

신재생에너지로서 수소에 대한 수요가 증가하고 있으나 기존의 화석 연료와 달리 수소는 연료 공급을 위한 전용 충전소가 필요하며, 이러한 인프라 확보를 위해서 수소충전소의 위험성 평가가 선행되어야 한다. 따라서 본 연구에서는 정성적 위험성평가와 정량적 위험성 평가로 구분하여 수소충전소에 대한 위험성평가를 수행하였다. 정성적 평가는 Hazard and Operability Analysis(HAZOP) 기법을 사용하여 Dispenser Module을 두 개의 Node로 평가하였으며, Criticality Estimation Matrix에 따라 Filter의 막힘으로 인한 사고와 고압 사고의 위험도가 High Level로 평가되었다. 정량적 위험성 평가는 Hydrogen Korea Risk Assessment Module(Hy-KoRAM)을 사용하여 화재의 형상과 피해영향범위를 나타냈고, 개인적 위험도와 사회적 위험도에 대한 평가를 수행하였다. 개인적 위험도는 수소충전소로부터 약 100m 떨어진 공공시설 부근까지 추가적인 안전조치가 고려되는 As Low As Reasonably Practicable(ALARP) 구간의 위험도를 보였고, 사회적 위험도 역시 약 10명의 사망자가 발생할 사고빈도가 1E-04/year로 도출되며 ALARP 구간 내에 나타났다. 정성적·정량적 위험성 평가 결과, 공정 단계의 추가적인 안전 조치와 수소충전소 부근의 제한구역 설정을 통하여 안전성 향상 방안을 제시하였다.

Keywords

References

  1. Gu, X., J. Zhang, Y. Pan, Y. Ni, C. Ma, W. Zhou, and Y. Wang(2020), Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field, The Journal of Safety Science, Vol. 122, 104532.
  2. High Pressure Gas Safety Control Act(2021), https://www.law.go.kr/LSW/lsInfoP.do?efYd=20211216&lsiSeq=232897#0000
  3. Hussein, H., S. Brennan, and V. Molkov(2020), Dispersion of hydrogen release in a naturally ventilated covered car park, International Journal of Hydrogen Energy, Vol. 45, pp. 23882-23897. https://doi.org/10.1016/j.ijhydene.2020.06.194
  4. International Energy Agency(IEA)(2021), Net Zero by 2050.
  5. International Organization for Standardization(2016), International Standard ISO 17776, petroleum and natural gas industries - Major accident hazard management during the design of new installations.
  6. Kang, S. K. and H. L. Kim(2020), Analysis of Damage Range and Impact of On-Site Hydrogen Fueling Station Using Quantitative Risk Assessment Program (Hy-KoRAM), The Journal of Korean Hydrogen and New Energy Society, Vol. 31, No. 5, pp. 459-466. https://doi.org/10.7316/KHNES.2020.31.5.459
  7. Kang, S. G. and D. H. Lee(2022), Risk Assessment for Performance Evaluation System of Hydrogen Refueling Station, The Journal of Korean Hydrogen and New Energy Society, Vol. 33, No. 3, pp. 232-239. https://doi.org/10.7316/KHNES.2022.33.3.232
  8. KBS news(2019a), https://news.kbs.co.kr/news/view.do?ncd=4221248&ref=A.
  9. KBS news(2019b), https://news.kbs.co.kr/news/view.do?ncd=4208465&ref=A.
  10. KOSHA(2012a), Technical Guidelines for the Assessment of Accidental Damage (P-88-2012).
  11. KOSHA(2012b), Technical Guidelines for the Establishment of Measures to Minimize Damage in Chemical Plants (P-88-2012).
  12. Ministry of land(2021), http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95085506.
  13. Ministry of Trade and Industry and Energy(2022), High Pressure Gas Safety Management Law.
  14. Sandia Energy(2009), Analyses to Support Development of Risk Informed Separation Distances for Hydrogen Codes and Standards (SAND2009-0874).
  15. Sandia Energy(2022), Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) Version 5.0 Technical Reference Manua (SAND2022-16425).
  16. You, C. H. and J. Y. Kim(2018), HAZOP Study for Risk Assessment and Safety Improvement Strategies of CO2 Separation Process, The Korean Institute of Chemical Engineers, Vol. 56, No. 3, pp. 335-342.