• Title/Summary/Keyword: 수소이온 농도

Search Result 399, Processing Time 0.029 seconds

A Dissolved Oxygen Measurement System Using FET-type Dissolved Oxygen Sensor Array (FET형 용존산소 센서 어레이 측정시스템)

  • Jeong, H.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 2001
  • FET-type dissolved oxygen sensor has the Pt working electrode around the pH-ISFET. Appling a voltage to the working electrode, the hydrogen ion which is proportional to the dissolved oxygen concentration occurs around the pH sensing gate and we can measure the dissolved oxygen concentration by detecting pH concentration through the pH-ISFET. In this paper, a dissolved oxygen measurement system using FET-type dissolved oxygen sensor array which adopt a specific algorithm to enhance the reliability has been developed and we compared its performance with the commercial dissolved oxygen measurement system.

  • PDF

Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC (산화안정성 향상을 위한 고분자연료전지용 탄화수소복합막의 제조 및 특성연구)

  • Lee, Hyejin;Choi, Young-Woo;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.44-48
    • /
    • 2014
  • Sulfonated poly(arylene ether sulfone)-cerium composite membranes with improved oxidative stability were prepared for proton exchange membrane fuel cell application. Oxidative stability of the composite membranes changed depending on the amount of incorporated metal. Their water uptake, IEC and proton conductivity were also affected. ICP analysis confirmed trace of cerium ion in the composite membranes and $^1H$-NMR indicated successful coordination of sulfonic acid groups with the metal ions. Increasing amount of the cerium ion resulted in decrease in proton conductivities and water uptake, but enhanced oxidative stabilities. A hydrogen peroxide exposure equipment was used for the test of oxidative stability of the composite membranes, which enabled to mimic fuel cell operating condition compared with conventional Fenton's test.

Ion Compositional Existence Forms of PM10 in Seoul Area (서울지역 미세먼지(PM10) 중 이온성분의 존재형태 추정)

  • Lee, Kyoung-Bin;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Particulate matter (PM) has emitted in many regions of the world and is causing many health-related problems. Thus reasonable politics and solutions are needed to reduce PM in Seoul. Further it is required to clearly explain the major portions of chemical components contained in $PM_{10}$ to figure out the characteristics of $PM_{10}$, and to develop effective reduction measures in order to decrease the adverse effects of $PM_{10}$. $PM_{10}$ samples were collected in Seoul and analyzed their ions to examine the physical and chemical characteristics of ionic species. Since hydrogen ion ($H^+$) and carbonate ion (${CO_3}^{2-}$)) cannot be analyzed by Ion chromatography (IC), concentrations of $H^+$ and ${CO_3}^{2-}$ were initially estimated by pH and equivalent differences between anions and cations in this study. Starting from the study findings, good combination results for compositional patterns between anions and cations were obtained by applying a mathematical modelling technique that was based on the mass balance principle. The ions in $PM_{10}$ were combined with $H^+$, ${CO_3}^{2-}$, and supplement for $NO_3{^-}$, $Cl^-$ formed such compounds $NH_4Cl$, $NH_4NO_3$, $CaSO_4$, $(NH_4)_2SO_4$, $NaNO_3$, NaCl, $Na_2CO_3$, and $(NH_4)_2CO_3$ in the study area.

The Effect of Continuous and Intermittent Aeration on Hog Manure Composting and Odor Control through Fresh Compost (연속 및 간헐통기가 돈분 퇴비화 및 생퇴비 탈취에 미치는 영향)

  • J. H. Hong;Park, B. M.;Park, W. L.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-48
    • /
    • 1998
  • 가축분뇨, 음식쓰레기 둥의 유기성 고형 폐기물의 퇴비화처리 과정의 성능 향상과 암모니아 가스 발생을 저감화 하려는 연구의 일환으로서 파이로트 규모의 원통형 회분식 분해조 및 숙성조를 설계, 제작하여 퇴비화 성능과 탈취 효과를 분석하였다. 고형퇴비화 처리에 미치는 주요요인은 초기재료의 수분, 탄질비, 수소이온농도, 발효온도 및 통기조건 등이다. 돈분에 부자재인 톱밥을 혼합하여 초기 재료의 수분, 탄질비, 수소이온농도 등을 동일한 재료로서 같은 수준에 유지하고 연속통기와 간헐통기 방식으로 퇴비화하는 동안에 분해 및 숙성단계의 부위별 발효온도의 변화, 산소흡수 및 탄산가스 배출농도의 변동, 평균통기량, 재료의 평균온도 변화, 암모니아가스 배출농도의 변화 등을 분해 및 숙성 전기간을 통해 측정하고 초기재료와 숙성재료의 주요 이화학적 성분을 분석하여 퇴비화 성능과 회비 탈취 효율을 비교하였다. 주요 연구결과는 다음과 같다. 1. 숙성과정 8일 이후의 암모니아가스 탈취효율은 연속통기법이 90%이고, 간헐통기법이 70%였으며, 분해 및 숙성과정의 발효온도, 탄산가스 발생, 암모니아가스 배출농도 및 숙성회비의 성분 둥의 결과로서 판단할 때 에 퇴비 화 소요기 간은 6주간이었다. 2. 탄산가스 배출농도 변화로서 간헐통기 퇴비화 방식은 연속통기법에 비하여 분해과정이 7일 정도 빠르고, 숙성과정이 10일 정도 단축되었으며 암모니아가스 농도도 적게 나타나고 있었다. 3. 퇴비화 분해과정이 지난 후 숙성과정 도입단계에서 퇴비재료의 혼합 교반에 따른 재료의 고온상승으로 인한 암모니아가스의 고농도화 현상의 억제대책이 필요하다고 판단되었다.

  • PDF

Cadmium - Titanium alloy plating (Cadmium - Titanium 합금도금 공정개발)

  • 이종호;박용성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.04a
    • /
    • pp.10-15
    • /
    • 1994
  • 전기도금 공정에서 발생하는 수소취성은 다량의 수소이온이 강제품에 흡수되어 취화되는 현상을 나타내는 것으로 인장강도 200KSI 이상이 요구되는 항공기용 또는 로켓트 추진기관용 초고강도강에서 크게 문제가 되고 있다. 본 내용은 전기 카드뮴도금 작업시에 발생되는 수소취성에 대하여 간략하게 기술하고. 이 수소취성을 제거하는 방법 및 수소취성을 저게 생성시키는 저취성도금인 Cd-Ti 합금도금의 공정개발 결과를 보고한다. 실험결과에 의하면 도금층의 Ti함량은 0.1-0.7%이며 Ti의 공석에 의하여 Cd 도금에 비하여 저취성을 나타냈으며, Cd-Ti합도금의 내식성은 상대평가인 염수분무시험 결과 Cd도금과 비교하여 소재표면의 부식을 일으키는 붉은녹발생까지의 시간이 500시간으로 보다 높은 내식성을 나타내었다. 그리고 Cd-Ti 합금의 공정표준 및 Ti농도의 관리방법 등을 정리하여 보고한다.

  • PDF

Microsomal Proton Transport Activity Measured by Quinacrine Fluorescence from Tomato Roots (Quinacrine 형광을 이용한 토마토 뿌리조직 마이크로솜의 수소이온이동 활성측정)

  • Shin, Dae-Seop;Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.53-58
    • /
    • 2002
  • Quinacrine, a pH-sensitive fluorescence probe, which exists either as an unprotonated fluorescence form or a protonated noufluorescence form, can be used to measure the proton transport activity of $H^+-ATPase$. Quinacrine was used to determine the optimal conditions for measuring the activity of microsomal $H^+-ATPase$ prepared from the roots of tomato plants. The amount of quinacrine fluorescence quenching obtained at $0.43{\mu}g/{\mu}l$ of microsomal protein concentration was 25-26%, which shows that the enzyme activity of 100 nmol/min decreases 10% of quinacrine fluorescence. Maximal fluorescence quenching was obtained at pH 7.0-7.2 and 2 mM $Mg^{2+}$ Because the activity of microsomal $H^+-ATPase$ is also maximal at these conditions, the quinacrine fluorescence well represents the activity of $H^+-ATPase$. Vanadate and $NO_3-$, specific inhibitors of plasma and vacuolar $H^+-ATPases$, respectively, were successfully applied to inhibit the quinacrine fluorescence quenching mediated by the corresponding $H^+-ATPases$. These results imply that quinacrine is a useful tool for measuring the proton transport activities of microsomes obtained from the root tissue of tomato plants.

Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane (PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구)

  • Oh, Sohyeong;Park, Jisang;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.49-53
    • /
    • 2021
  • The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 ℃, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 ℃, and a sample size of 0.5 ㎠ were suitable.

Effect of Composition on the pH and Solution Potential of Mixed Solutions of Copper and Iron Chloride (염화(鹽貨)구리와 염화철(鹽貨鐵) 혼합용액(混合溶液)의 조성(組成)이 pH와 용액전위(溶液電位)에 미치는 영향(影響))

  • Lee, Man-Seung;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2008
  • In order to simulate the leaching solution of copper sulfide ore in $FeCl_3$ solutions, synthetic solutions with composition of $FeCl_3$-$FeCl_2$-$CuCl_2$-CuCl-NaCl-HCl-$H_2O$ were prepared. The concentration of iron and copper chloride was varied from 0.1 to 1 m in synthetic solutions. The effect of composition on the mixed solution pH and potential at $25^{\circ}C$ was measured. When HCl concentration was constant, the increase of CuCl concentration increased solution pH. The increase of other solutes excluding HCl and CuCl decreased solution pH owing to the increase of the activity coefficient of hydrogen ion. A high CuCl concentration favored the redox equilibrium in the direction of Cu(I), while $FeCl_3$ had the opposite effect.

PVA/Silica Hybrid Membrane Containing Sulfonic Acid Croup for Direct Methanol Fuel Cells Application (Sulfonic acid group을 갖는 PVA/Silica Hybrid막의 DMFC 응용)

  • Young Moo Lee;Dae Sik Kim;Kwang Ho Shin;Ho Bum Park;Ji Won Rhim
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at various crosslinking agent content using sulfosuccinic acid (SSA) containing sulfonic acid group ($SO_3H)$. To reduce methanol permeability, silica was introduced to the membrane using sol-gel process. The hybrid membranes were studied in relation to proton conductivity and methanol permeability. It was found that both these properties were very dependent on the effect of SSA content as a crosslinking agent and as a donor of hydrophilic $SO_3H)$ group. The proton conductivities of these PVA/SSA/Silica membranes are in the range from $10^{-3}\;to\;10^{-2}$S/cm and the methanol permeabilities are in the range from $10^{-8}\;to\;10^{-7}\;cm^2/sec$.

Geochemical characteristics of a LILW repository I. Groundwater (중.저준위 방사성 폐기물 처분부지의 지구화학 특성 I. 지하수)

  • Choi, Byoung-Young;Kim, Geon-Young;Koh, Yong-Kwon;Shin, Seon-Ho;Yoo, Si-Won;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.297-306
    • /
    • 2008
  • This study was carried out to identify the characteristics of hydrochemistry controlling groundwater chemical condition in a repository site of Gyeongju. For this study, 12 bore holes of all monitoring bore holes in the study area were selected and total 46 groundwater samples were collected with depth. In addition, 3 surfacewater samples and 1 seawater sample were collected. For water samples, cations and anions were analyzed. The environmental isotopes(${\delta}^{18}O-{\delta}D$, Tritium, ${\delta}^{13}C,\;{\cdot}{\delta}^{34}S$) were also analyzed to trace the origin of water and solutes. The result of ${\delta}^{18}O\;and\;{\delta}D$ analysis showed that surface water and groundwater were originated from precipitation. Tritium concentrations of groundwater decreased with depth but high concentrations of tritium indicated that groundwater was recharged recently. The results of ion and correlation analysis showed that groundwater types of the study area were represented by Ca-Na-$HCO_3$ and Na-Cl-$SO_4$, which was caused by sea spray and water-rock interaction. Especially, high ratio of Na content in groundwater resulted from ion exchange. For redox condition of groundwater, the values of DO and Eh decreased with depth, which indicated that reducing condition was formed in deeper groundwater. In addtion, high concentration of Fe and Mn showed that redox condition of groundwater was controlled by the reduction of Fe and Mn oxides.

  • PDF