Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
Korean Chemical Engineering Research
/
v.62
no.1
/
pp.36-43
/
2024
Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.
The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.
Journal of the Korean Applied Science and Technology
/
v.34
no.1
/
pp.1-11
/
2017
Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.
Bu, Jong Chan;Jung, Won Suk;Lim, Da Bin;Shim, Yu-Jin;Cho, Hyun-Seok
Journal of the Korean Electrochemical Society
/
v.25
no.4
/
pp.154-161
/
2022
The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.
Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.12
/
pp.804-815
/
2019
Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.
Transactions of the Korean Society of Mechanical Engineers B
/
v.35
no.4
/
pp.391-397
/
2011
The use of Hydrogen as a fuel is receiving considerable attention and as a result, research on novel methods of hydrogen production is necessary so that the hydrogen demands in the future can be satisfied. This study presents experimental data on methanol Autothermal Reformation that quantifies the relationship between the oxygen-to-methanol ratio ($O_2/CH_3OH$) and reformer efficiency. For each catalyst configuration, the $O_2/CH_3OH$ was varied from 0.1 to 0.4, with an increment of 0.05, to investigate the effects of $O_2/CH_3OH$ on the reactor performance, including temperature profile, conversion, and efficiency. $O_2/CH_3OH$ was increased from 0.15 to 0.20, and the catalyst bed temperature increased by $235^{\circ}C$ to approximately $550^{\circ}C$. The catalyst bed temperature increased with increasing $O_2/CH_3OH$ as the reaction shifted from endothermic to exothermic reaction and as a result, excess heat, which raised the reactor temperature, was generated. The reactor performance was shown to be highly dependent on $O_2/CH_3OH$. The optimum $O_2/CH_3OH$ = 0.30 found in the experimental tests is 30% higher than the theoretical optimum of 0.23. This is attributed to a combination of factors such as the concentrations of the $O_2$ and $CH_3OH$ gas, reaction rate, catalyst effects, heat loss from the reactor, and the difference between the actual amounts of reaction products formed and the theoretical amounts of the reaction products.
Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.
Natural gas is a mixture of hydrocarbon gases and impurities such as nitrogen, hydrogen sulfide, and carbon dioxide and a clean energy producing no pollution materials for combustion. Currently, the demand of the natural gas is rapidly increasing due to worldwide environmental problems. According to Hubbert's study in the past, the natural gas was predicted as rapidly depleted resources, and then the results led to high gas price and limitation of usage during 1980s. Afterward, the study of natural gas resources based on geology identified the additional natural gas resources that were not considered in Hubbert's study. They are unconventional gas, additional resources in the existed reservoirs, and natural gas in deep subsurface areas. Such additional resouces made the future of natural gas bright and pormised low and stable gas price in the future. Deep natural gas is defined as the gas existing at or below 15,000ft$(4,752{\cal}m)$ in depth from the surface. According to the study from the U.S. Geological Survey(USGS) in 1995, 1,412 TCF of technically recoverable natural gas was remained to be discovered or developed in the onshore of United States. A significant part of that resource base, 114 TCF, exists at deep sedimentary basins, and it shows wide distribution with various geological environments. In 1995, the deep gas contributed to $6.7\% of total supply amount of natural gas in the United States and is expected to be $18.7\% by 201.5. However, the development of the deep gas is a high risky business due to expensive investment and high portion of dry holes, although it is developed. Thus, for developing the deep gas economically, it is necessary to overcome many technical challenges. In this paper, for increasing success rate of the deep gas, 1) geologic and compositional characteristics, and production cost have been analyzed according to depth, 2) technical problems related to deep gas production have been summarized, and 3) finally future study areas for increasing application of the deep gas have been suggested. For reference, this paper was written based on the study results from USGS and Gas Research Institute(GRI), for the United States is doing the most active R&D in the deep gas area, and thus, has many reliable data.
Korea is one of the countries that propel new renewable energy industrialization actively in the context of change in this industrial structure. The previous government declared this kind of industrialization as a national goal in 2004 and the current government also supports this strategy. However, it is necessary to check whether this strategy is proper and effective. The reason is because solar, wind and fuel cells that have attracted public attention as the new growth engines cannot replace main industries yet. This paper tries to analyze the economic effects of new renewable energy industrialization by dividing them into production effect and job creation effect. The result of this analysis shows that solar energy is not effective at all, while wind energy is very effective in both production and job creation. In conclusion, this paper suggests that the government has to propel new renewable energy industrialization after consideration of these kinds of economic effects.
Ham, Su Mi;Yoo, In Sang;Park, Sang Joon;Kim, Ji Hyeon
Korean Chemical Engineering Research
/
v.51
no.4
/
pp.482-486
/
2013
Recently, biohydrocarbons are gathering an interest as a new bioenergy due to the versatile applicability. In the present work, a process is proposed for the recovery of lipids from Recombinant E. coli MG1655 which provides longer chain fatty acids. After the growth of the recombinant E. coli, the cells were disrupted by high pressure homogenizer for obtaining intracellular lipids and the resulting solutions were centrifuged and extracted. For the efficient cell disruption with high pressure homogenizer, the pressure higher than 5,000 psi was required. In addition, under the conditions of applied pressure 5,000 to 20,000 psi, 1~3 pass homogenizing was enough for the more than 90% cell disruption. As organic solvents for extraction of lipid, hexane/isopropyl alcohol and ethyl acetate/ethanol systems showed excellent extracting power. With these solvent systems, the 60% lipid could be recovered. Moreover it was found that the extracted lipids contained long-chain fatty acids such as $C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.