• Title/Summary/Keyword: 수소동위원소 분리시스템

Search Result 5, Processing Time 0.023 seconds

Cryogenic Distillation Simulation for Hydrogen Isotopes Separation (수소 동위원소 분리를 위한 초저온증류공정 모사)

  • Noh, Sanggyun;Rho, Jaehyun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4643-4651
    • /
    • 2013
  • In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

Tritium Fuel Cycle Technology of ITER Project (ITER 사업의 삼중수소 연료주기 기술)

  • Yun, Sei-Hun;Chang, Min-Ho;Kang, Hyun-Goo;Kim, Chang-Shuk;Cho, Seung-Yon;Jung, Ki-Jung;Chung, Hong-Suk;Song, Kyu-Min
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2012
  • The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.

Oxygen and Hydrogen Isotope Studies of Fluid-Rock Interaction of the Radons-Sancheong Anorthositic Rocks (하동-산청 회장암질암의 유체-암석 상호반응에 대한 산소와 수소 동위원소 연구)

  • Park Young-Rok;Ko Bokyun;Lee Kwang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.224-237
    • /
    • 2004
  • The anorthositic rocks of the study area are divided into the northern Sancheong and southern Hadong anorthositic rocks depending on the different distribution patterns and lithologies. In order to evaluate the characteristics of the hydrothermal systems developed in the study area, oxygen and hydrogen isotopic compositions of the anorthositic rocks were measured. Oxygen isotopic values of the plagioclase exhibit an interesting spatial distribution. Plagioclase collected from the Sancheong anorthositic rocks in the northern part tends to have a relatively restricted range of $\delta$$^{18/0}$ values between 7.3 and 8.8$\textperthousand$, which are heavier than 'normal' $\delta$$^{18/O}$ value (6-6.5$\textperthousand$) typical for plagioclase of the fresh mantle-derived anorthosite, whereas plagioclase from the southern part is characterized by a wide range of $\delta$$^{18/O}$ values between -4.4 and 8.2$\textperthousand$ and much lighter values than 'normal' value for plagioclase of the fresh mantle-derived anorthosite. Plagioclase from the middle part has $\delta$$^{18/O}$ values heavier than the plagioclase from the southern part, but lighter than that from the northern part. The spatial distribution of $\delta$$^{18/O}$ values suggests that the decoupled hydrothermal flow systems might have been developed in the study area. Meteoric water dominated in the hydrothermal flow systems developed in the southern area, whereas magmatic fluid dominated in the northern area. The relationship between water content and hydrogen isotopic composition of anorthosites shows a positive correlation. The positive correlation indicates that fluids exsolved from magma during magmatic differentiation caused deuteric alteration of anorthositic rocks involving replacement of pyroxenes to amphiboles. After the deuteric alteration, hydrothermal system developed by meteoric water dominated the southern area, and erased record of the hydrothermal system developed by magmatic fluid at earlier stage. However, the development of meteoric hydrothermal system has been limited in the southern area only, and could not affect the Sancheong anorthositic rocks in the northern area. The abundant occurrences of secondary alteration minerals such as sericite, calcite, and chlorite in the southern Hadong anorthosite relative to the northern Sancheong anorthositc seem to be related to the overlapping of two distinct hydrothermal systems in the southern area.

Investigation of Cryogenic Breakthrough Curve Measurement System at 77 K for Hydrogen Isotopologue Separation (수소 동위원소 분리를 위한 77 K 극저온 파과 곡선 측정 시스템 제작)

  • Kim, Suhwan;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Breakthrough analysis has widely been explored for the dynamic separation of gaseous mixtures in porous materials. In general, breakthrough experiments measure the components of a flowing gas when a gaseous mixture is injected into a column filled with an adsorbent material. In this paper, we report on the design and fabrication of a breakthrough curve measurement device to study the dynamic adsorptive separation of hydrogen isotopologues in porous materials. Using the designed system, an experiment was conducted involving a 1:1 mixture of hydrogen and deuterium passed through a column filled with zeolite 13X (1 g). At room temperature, both hydrogen and deuterium were adsorbed in negligible amounts; however, at a temperature of 77 K, deuterium was preferentially adsorbed over hydrogen. The selectivity was different from that in the existing literature due to the different sample shapes, measurement methods, and column structures, but was at a similar level to that of cryogenic distillation (1.5).