Browse > Article
http://dx.doi.org/10.7316/khnes.2012.23.1.056

Tritium Fuel Cycle Technology of ITER Project  

Yun, Sei-Hun (ITER Korea, National Fusion Research Institute)
Chang, Min-Ho (ITER Korea, National Fusion Research Institute)
Kang, Hyun-Goo (ITER Korea, National Fusion Research Institute)
Kim, Chang-Shuk (ITER Korea, National Fusion Research Institute)
Cho, Seung-Yon (ITER Korea, National Fusion Research Institute)
Jung, Ki-Jung (ITER Korea, National Fusion Research Institute)
Chung, Hong-Suk (Korea Atomic Energy Research Institute)
Song, Kyu-Min (KHNP Central Research Institute)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.23, no.1, 2012 , pp. 56-64 More about this Journal
Abstract
The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.
Keywords
ITER fuel cycle; Tokamak exhaust processing; Isotope separation system; Storage and delivery system; Detritiation system; Fueling system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Konishi, M. Glugla, and T. Hayashi, "Fuel Cycle Design for ITER and Its Extrapolation to DEMO," Fusion Engineering and Design, Vol. 83, 2008, pp. 954-958.   DOI   ScienceOn
2 M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, and E. Tada, "The ITER Tritium System," Fusion Engineering and Design, Vol. 82, 2007, pp. 472-487.   DOI   ScienceOn
3 H. Yoshida, O. Kveton, J. Koonce, D. Holland, and R. Haange, "Status of the ITER Plant Design", Fusion Engineering and Design, Vol. 39-40, 1998, pp. 875-882.   DOI
4 H. Chung, M. Shim, H. Yoshida, H. Jin, J. Lee, D.-H. Ahn, K.-K. Kim, K.-M. Song, D.J. Kim, M.H. Chang, H.-G. Kang, S.-H. Yun, S. Cho, "Korea's Progress on the ITER Tritium System," Fusion Engineering and Design, Vol. 84, 2009, pp. 599-603.   DOI   ScienceOn
5 H. Chung, D. Chung, D. Koo, J.S. Lee, M. Shim, S. Cho, K.J. Jung, S.-H. Yun, "Storage and Delivery of Hydrogen Isotopes," Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 372-379.
6 ITER IDM Document (ITER_D_2X6K67), Plant Description (PD), Chap. 10 Fuel Cycle and Radiological Monitoring (2009).
7 D. Babineau, S. Maruyama, R. Pearce, M. Glugla, L. Bo, B. Rogers, S. Willms, G. Piazza, T. Yamanishi, S.H. Yun, L. Worth, and W. Shu, "Review of the ITER Fuel Cycle," IAEA FEC 2010, 2010.
8 M. Glugla, D. Babineau, L. Bo, S. Maruyama, R. Pearce, G. Piazza, B. Rogers, S. Willms, T. Yamanishi, and S.-H. Yun, "Review of the ITER D-T Fuel Cycle Systems and Recent Progress," Tritium 2010, Nara, Japan, 2010.
9 S. Maruyama, Y. Yang, R.A. Pitts, M. Sugihara, S. Putvinski, S. Carpentier-Chouchana, B. Li, W. Li, L. Baylor, S.J. Meitner, C. Day, B. laBombard, and M. Reinke, "ITER Fuelling System Design and Challenges-Gas and Pellet Injection and Disruption Mitigation," IAEA FEC 2010, 2010.