• Title/Summary/Keyword: 수문유출

Search Result 1,741, Processing Time 0.027 seconds

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area (농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가)

  • Mercado, Jean Margaret R.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.

Development and Assessment of Flow Nomograph for the Real-time Flood Forecasting in Cheonggye Stream (청계천 실시간 홍수예보를 위한 Flow Nomograph 개발 및 평가)

  • Bae, Deg-Hyo;Shim, Jae Bum;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1107-1119
    • /
    • 2012
  • The objectives of this study are to develop the flow nomograph for real-time flood forecasting and to assess its applicability in restored Cheonggye stream. The Cheonggye stream basin has the high impermeability and short concentration time and complicated hydrological characteristics. Therefore, the flood prediction method using runoff model is ineffective due to the limit of forecast. Flow nomograph which is able to forecast flood only with rainfall information. To set the forecast criteria of flow nomograph at selected flood forecast points and calculated criterion flood water level for each point, and in order to reflect various flood events set up simulated rainfall scenario and calculated rainfall intensity and rainfall duration time for each condition of rainfall. Besides, using a rating curve, determined scope of flood discharge following criterion flood water level and using SWMM model calculated flood discharge for each forecasting point. Using rainfall information following rainfall scenario calculated above and flood discharge following criterion flood water level developed flow nomograph and evaluated it by applying it to real flood event. As a result of performing this study, the applicability of flow nomograph to the basin of Cheonggye stream appeared to be high. In the future, it is reckoned to have high applicability as a method of prediction of flood of urban stream basin like Cheonggye stream.

Comparison of IUHs obtained by the Derived and Simple Equation of GIUH on Third and Fourth-Order Streams (3, 4차 하천에서의 GIUH 유도식과 간략식에 의해 산정된 순간단위도의 비교연구)

  • Joo, Jin-Gul;Ham, Dae-Heon;Jun, Hwan-Don;Lee, Jung-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1107-1121
    • /
    • 2008
  • The simple equation of GIUH are frequently used in many researches instead of the derived equation of GIUH. However it is still unknown whether the simple equation of GIUH is adaptable for estimating IUHs for basins with various geomorphologic conditions. To verify the applicability of the simple equation of GIUH, in this research, four basins which were Bangrim, Sanganmi, Museong, and Byeongcheon were selected and each basin was assumed as the third and fourth stream order basin according to variable resolutions. After than, IUHs were estimated using the derived and simple equations of GIUH. Eight to sixteen hydrographs were estimated from the each IUH, compared with observed graphs. In case of that the basin is assumed as a third order stream, the derived equation underestimated the peak flows while the simple equation overestimated them. When the basin is assumed as a fourth order stream, the simple equation generally overestimated the peak flows whereas the derived equation produced peak flows good agreement with the observed peak flow. Moreover, the simple equation showed various deviations in accuracy whereas the derived equation produced stable results. Based on the fact found from this research, it can be concluded that the derived equation of GIUH brings better results than the simple equation of GIUH to estimate IUHs for ungauged basins.

Development and evaluation of dam inflow prediction method based on Bayesian method (베이지안 기법 기반의 댐 예측유입량 산정기법 개발 및 평가)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.489-502
    • /
    • 2017
  • The objective of this study is to propose and evaluate the BAYES-ESP, which is a dam inflow prediction method based on Ensemble Streamflow Prediction method (ESP) and Bayesian theory. ABCD rainfall-runoff model was used to predict monthly dam inflow. Monthly meteorological data collected from KMA, MOLIT and K-water and dam inflow data collected from K-water were used for the model calibration and verification. To estimate the performance of ABCD model, ESP and BAYES-ESP method, time series analysis and skill score (SS) during 1986~2015 were used. In time series analysis monthly ESP dam inflow prediction values were nearly similar for every years, particularly less accurate in wet and dry years. The proposed BAYES-ESP improved the performance of ESP, especially in wet year. The SS was used for quantitative analysis of monthly mean of observed dam inflows, predicted values from ESP and BAYES-ESP. The results indicated that the SS values of ESP were relatively high in January, February and March but negative values in the other months. It also showed that the BAYES-ESP improved ESP when the values from ESP and observation have a relatively apparent linear relationship. We concluded that the existing ESP method has a limitation to predict dam inflow in Korea due to the seasonality of precipitation pattern and the proposed BAYES-ESP is meaningful for improving dam inflow prediction accuracy of ESP.

The Variation of Water Temperature and Turbidity of Stream Flows entering Imha Reservoir (임하호 유입지천의 수온과 탁도 변화)

  • Kim, Woo-Gu;Jung, Kwan-Soo;Yi, Yong-Kon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.13-20
    • /
    • 2006
  • The changing patterns of water temperature and turbidity in streams entering Imha Reservoir were studied. The turbidity variation near the intake tower in Imha Reservoir was investigated in relation with the variation of water temperature and turbidity in streams. Water temperature was estimated using multi-regression method with air temperature and dew point as independent variables. Peak turbidity was also estimated using non-linear regression method with rainfall intensity as an independent variable. Although more independent variables representing watershed characteristics seem to be needed to increase estimation accuracies, the methodology used in this study can be applied to estimate water temperature and peak turbidity in other streams.

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.

Analysis of Design Flood Change for the Small to Medium Size Rivers in Gyeonggi-do (경기도 중.소하천의 계획홍수량 변화 분석)

  • Park, Sun-Hee;Won, Jin-Young;Song, Ju-Il;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.143-149
    • /
    • 2010
  • The river master plan was established every 10 years in Korea. The basin characteristics of 62 small and medium size rivers of which master plans were recently established during the past three years in Gyeonggi-do were investigated, and design rainfalls and design floods in the past and the latest were compared and analyzed. It was predicted that basin data and flood estimating method changed design flood. The quantitative amount of design floods were analyzed for 6 basins like Gungunchen etc. As the results, the increasing factors of design flood were the application of critical duration time, temporal time of rainfall and the increase of CN value. The decreasing factors of design flood were the application of Huff's rainfall distribution instead of Mononobe one and the ARF. The application of critical duration time increased flood about 60% whereas the application of Huff's rainfall distribution method estimated less flood than Mononobe about 62%. Considering critical duration time and changing rainfall distribution were the most important factors of increasing or decreasing design flood. However, trends of flood variation were differently analyzed by factors in 6 basins because characteristics of topography, weather, hydrology and hydraulic were different, now that correlations were not found between factors and flood variation. Flood variation is evaluated by complex effects of factors so new flood recalculated by reasonable methods should be considered as design flood.

Inundation Analysis of Suyoung.Mangmi Lowland Area Using SWMM and FLUMEN (SWMM과 FLUMEN을 이용한 수영.망미 저지대의 침수 분석)

  • Kang, Tae-Uk;Lee, Sang-Ho;Jung, Tae-Hun;Oh, Jai-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.149-158
    • /
    • 2010
  • Recent rainfall patterns in Korea show that both of the total amount of rainfall and the total number of heavy rain days have been increased. Therefore, the damage resulted from flood disaster has been dramatically increased in Korea. The purpose of the present study is to analyze flooding in an urban area using SWMM linked with FLUMEN. The study area is Suyeong-Mangmi lowland area, Busan, Korea. Suyeong-Mangmi lowland area have been a flooding hazard zone since 1995. The last flooding cases of this area occurred on July 7th and 16th, 2009, and the later flooding case was analyzed in this study. The first step of computation is calculating flow through storm sewers using the urban runoff simulation model of SWMM. The flooding hydrographs are used in the inundation analysis model of FLUMEN. The results of inundation analysis were compared with the real flooding situation of the study area. The real maximum inundation depth was guessed by 1.0 m or more on July 16th. The computation yields the maximum inundation depth of 1.2 m and the result was somewhat overestimated. The errors may be resulted from the runoff simulation and incapability of simulation using FLUMEN for flow into buildings. The models and procedures used in this study can be applied to analysis of flooding resulted from severe rainfall and insufficiency of drainage capacity.

Analysis of Urban Inundation Considering Building Footprints Based on Dual-Drainage Scheme (건물의 영향을 고려한 이중배수체계기반 침수해석)

  • Lee, Jeong-Young;Jin, Gi-Ho;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.40-51
    • /
    • 2014
  • This study aims to investigate urban inundation considering building footprints based on dual-drainage scheme. For this purpose, LiDAR data is cultivated to generate two original data set in terms of DEM with $1{\times}1$ meter and building layer of the study drainage area in Seoul and then the building layer is overlapped as vector polygon with the mesh data with the same size as DEM. Then, terrain data for modeling were re-sampled to reduce resolution as $10{\times}10$ meters. As results, the simulated depth without considering building footprints has a tendency to underestimate the inundation depth compared to observed data analized by CCTV imagery. Otherwise, the simulation result considering building footprints revealed definitely higher fitness. The difference of inundation depth came from the variation of inundation volume which was relevant to inundation extent. If the building footprints are enlarged, the possible inundation depth is increased, which results in being inundation depth higher because hydrological conditions such as rainfall depth are conservational. Otherwise, according to comparison of inundation extents, there were no significant difference but the case of considering building footprint was revealed slightly higher fitness. Thus, it is concluded that the considering building footprint for inundation analysis of urban watershed should be required to improve simulation accuracy synthetically.

Analysis of Flood Inundation using WMS and RADARSAT SAR Image (WMS와 RADARSAT SAR 영상을 이용한 유역 침수구역 분석)

  • Kim, Kyung-Tak;Kim, Joo-Hun;Park, Jung-Sool;Byun, In-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.1-12
    • /
    • 2007
  • This study was conducted in order to analyze a flooded area by the overflow of a stream using hydrological and hydraulic models and to estimate the utility of the SAR satellite image by comparing a protected lowland inundation area with a past inundation area map. The research area selected for this study is Sapkyocheon, which was flooded in August 1999. The flood stage was analyzed to select an inundation area by applying flood events in August 1999. By importing analyzed flood stage data into TIN data of WMS, the inundation area of a protected lowland was selected and then compared with an flood hazard map of WAMIS. An inundation area is selected by the SAR satellite image in comparing the image of August 4, 1999 (inundation time) with the image of September 8, 2002 (after inundation). The method of selecting an inundation area with the hydraulic model of HEC-RAS can be used to select an inundation area of external overflow, but it has the limit of selecting an inundation area concerning the internal drainage. The method of using the SAR satellite image can complement the limit of an inundation area of an internal drainage but accuracy of inundation area depends on using SAR satellite image acquired at time of maximum depth.

  • PDF