• Title/Summary/Keyword: 수로

Search Result 355,390, Processing Time 0.344 seconds

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

Analysis of domestic and overseas coastal groundwater management laws and policies (국내외 해안 지하수관리 법·정책 사례 분석)

  • Shim, Young-Gyoo;Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.633-643
    • /
    • 2024
  • Many coastal countries have developed and used a wide range of technologies and policy measures to protect freshwater aquifers and groundwater resources from seawater intrusion, and have established and implemented a foundation to legally and institutionally support them. This study covers coastal states in the eastern United States, the Netheland, India and Japan. The goal of this study is to analyze each country's legal and policy measures for coastal groundwater management. By introducing Jeju Island's groundwater standard level system, we aim to provide a basis for future discussions on groundwater management measures not only in Jeju Island but also in coastal areas of Korea. As a result of the analysis, despite the various contents and aspects of coastal groundwater management based on local issues and characteristics around the world, in order to achieve the common goal of securing a stable amount of groundwater withdrawal and preventing seawater intrusion and to maximize the efficiency of groundwater management, it is understood that attempts are being made to establish optimal management measures, laws, systems, and policies based on several key factors. First, considering the hydrogeological characteristics and status of coastal groundwater, a separate special management system is being established and implemented within the scope of the national groundwater management system. In addition, preventing and maintaining groundwater level decline through limiting the amount of groundwater withdrawal and preventing seawater intrusion are key policy goals and policy tools, and it is suppored by research and development. Finally, tt was found that synergy effects are being sought by using various other policy tools and measures in a complex manner.

Study on Predicting Changes in Traffic Demand in Surrounding SOCs Due to Road SOC Construction Using Big Data - Centered Around the Connecting Road between Incheon Yeongjong International City and Cheongna International City (3rd Bridge) - (빅데이터를 활용한 도로 SOC건설에 따른 주변 SOC 교통수요 변화 예측 연구 - 인천 영종국제도시~청라국제도시 간 연결도로(제3연륙교)를 중심으로 -)

  • Byoung-Jo Yoon;Sang-Hun Kang;Seong-Jin Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.705-713
    • /
    • 2024
  • Purpose: Currently, the only routes that enter Yeongjong Island are Yeongjong Bridge and Incheon Bridge, which are private roads. The purpose of this study is to predict and study changes in transportation demand for new routes and two existing routes according to the plan to open the 3rd Bridge, a new route, in December 2025. Method: The basic data for traffic demand forecast were O/D and NETWORK data from 2021.08, KOTI. In order to examine the reliable impact of Yeongjong Bridge and Incheon Bridge on the opening of the 3rd Bridge, it is necessary to correct the traffic distribution of Yeongjong Island and Incheon International Airport to suit reality, and in this study, the trip distribution by region was corrected and applied using Mobile Big Data. Result: As of 2026, the scheduled year of the opening of the 3rd Bridge, two alternatives, Alternative 1 (2,000 won) and Alternative 2 (4,000 won), were established and future transportation demand analysis was conducted, In the case of Alternative 1, which is similar to the existing private road toll restructuring, the traffic volume of the 3rd Bridge was predicted to be 42,836 out of 199,101 veh/day in the Yeongjong area in 2026, and the traffic volume reduction rate of the existing road was analyzed as 21.5%. Conlclusion: As a result of the review (based on Alternative 1), the proportion of convertted traffic on the 3rd Yanji Bridge was estimated to be 70% of Yeongjong Bridge and 30% of Incheon Bridge, and 21.5% of the predicted traffic reduction on the existing road when the 3rd Yanji Bridge was opened is considered appropriate considering the results of the case review and changes in conditions. It is judged that it is a way to secure the reliability of the prediction of traffic demand because communication big data is used to reflect more realistic traffic distribution when predicting future traffic demand.

Folate intake in Korean adults: analysis of the 2016-2018 Korea National Health and Nutrition Examination Survey with newly established folate database (한국 성인의 엽산 섭취실태: 새로 구축한 식품 엽산 함량 데이터베이스를 이용한 2016-2018 국민건강영양조사 자료 분석)

  • Eun-Ji Park;Inhwa Han;Kyoung Hye Yu;Sun Yung Ly
    • Journal of Nutrition and Health
    • /
    • v.57 no.4
    • /
    • pp.418-434
    • /
    • 2024
  • Purpose: The nutritional status of folate in Korean adults was evaluated using the newly established folate database (DB) and data from the 7th Korea National Health and Nutrition Examination Survey. Methods: This study analyzed the folate intake of 15,054 people (6,278 men and 8,776 women) and the relationship with serum folate concentration of 5,260 people (2,272 men and 2,988 women). Results: The average daily folate intake among Korean adults was lowest in the 19 to 29-year age group and highest in those in their 50s. Folate intake was higher in groups with higher education and household income, non-smokers, participants in aerobic physical activity, and dietary supplement users regardless of sex. Among men, office workers consumed more folate than physical workers. Vegetables and grains were the first and second most contributing food groups to folate intake. The serum folate levels were higher in women than men and lowest in the 19-29 year age group for both sexes. After adjusting for energy intake, age, income, smoking, physical activity, and dietary supplement intake, serum folate concentration increased significantly as intake increased (p < 0.001). The explanatory power (R2) of folate intake on the blood folate concentration was 0.183 and 0.141 in men and women, respectively. Conclusion: The proportion of participants consuming less than the estimated average requirement was 48.1% and 65.3% in men and women, respectively. In particular, the folate intake and serum levels of young men aged 19-29 years were the lowest. Therefore, it is necessary to improve their folate nutritional status through a balanced diet. In addition, the newly established folate DB may be useful for evaluating the folate nutritional status of Koreans.

Determination of Carbon Dioxide Concentration in CO2 Supplemental Greenhouse for Tomato Cultivation during Winter and Spring Seasons (겨울과 봄철의 CO2 시비 토마토 온실에서 온도에 따른 CO2 농도 구명)

  • Su-Hyun Choi;Young-Hoe Woo;Dong-Cheol Jang;Young-Ae Jeong;Seo-A Yoon;Dae-Hyun Kim;Ho-Seok Seo;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.416-422
    • /
    • 2023
  • This study was aimed to determine the changes in CO2 concentration according to the temperatures of daytime and nighttime in the CO2 supplemental greenhouse, and to compare calculated supplementary CO2 concentration during winter and spring cultivation seasons. CO2 concentrations in experimental greenhouses were analyzed by selecting representative days with different average temperatures due to differences in integrated solar radiation at the growth stage of leaf area index (LAI) 2.0 during the winter season of 2022 and 2023 years. The CO2 concentration was 459, 299, 275, and 239 µmol·mol-1, respectively at 1, 2, 3, and 4 p.m. after the CO2 supplementary time (10:00-13:00) under the higher temperature (HT, > 18℃ daytime temp. avg. 31.7, 26.8, 23.8, and 22.4℃, respectively), while it was 500, 368, 366, 364 µmol·mol-1, respectively under the lower temperature (LT, < 18℃ daytime temp. avg. 22.0, 18.9, 15.0, and 13.7℃, respectively), indicating the CO2 reduction was significantly higher in the HT than that of LT. During the nighttime, the concentration of CO2 gradually increased from 6 p.m. (346 µmol·mol-1) to 3 a.m. (454 µmol·mol-1) in the HT with a rate of 11 µmol·mol-1 per hour (240 tomatoes, leaf area 330m2), while the increase was very lesser under the LT. During the spring season, the CO2 concentration measured just before the start of CO2 fertilization (7:30 a.m.) in the CO2 enrichment greenhouse was 3-4 times higher in the HT (>15℃ nighttime temperature avg.) than that of LT (< 15℃ nighttime temperature avg.), and the calculated amount of CO2 fertilization on the day was also lower in HT. All the integrated results indicate that CO2 concentrations during the nighttime varies depending on the temperature, and the increased CO2 is a major source of CO2 for photosynthesis after sunrise, and it is necessary to develop a model formula for CO2 supplement considering the nighttime CO2 concentration.

Comparative Analysis of the Cultivation Environment Changes, the Emerging Budding, Flowering and Yields in High Bed Strawberry due to the Application of Crown Heating System (관부 난방 시스템 적용으로 인한 고설 딸기의 재배 환경 변화와 그에 따른 출뢰, 개화 및 수확량 비교 분석)

  • Taeseok Lee;Jingu Kim;Kilsu Han
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.449-455
    • /
    • 2023
  • In this study, the effect of crown heating on the cultivation environment, budding, flowering and yields of strawberry was analyzed. In December, January, and February, when the outside temperature was low, the average strawberry crown temperature at daytime in the test zone was 1.3℃ higher than that in the control zone, and the average strawberry crown temperature at nighttime in the test zone was 2.7℃ higher than that in the control zone. The average bed temperature at daytime in test zone was 1.7℃ higher than that in the control zone, and the average bed temperature at nighttime in test zone was 2.4℃ higher than that in the control zone. As a result of performing correlation analysis and regression analysis on strawberry crown temperature and budding period, the correlation coefficient was -0.86, which tended to be shorter as the crown temperature was higher, and the determination coefficient was 0.74. The total yields of strawberry during test period were 392.6 g/plant for test greenhouse and 346.0 g/plant for control greenhouse respectively. As for the quality of strawberries, the ratio of 2L (very large) grades and L (large) grades was 62.4% in the test greenhouse and 58.5% in the control greenhouse, indicating that the proportion of high quality strawberries was higher in the test greenhouse.

Analysis of Fruit Quality and Productivity of 'Kawanakajima Hakuto' Peach according to the Different Irrigation Starting Point (관수 개시점에 따른 복숭아 '천중도백도'의 과실 품질 및 생산성 변화 분석)

  • Seul Ki Lee;Jung Gun Cho;Jae Hoon Jeong;Dongyong Lee;Jeom Hwa Han;Si Hyeong Jang;Suhyun Ryu;Heetae Kim;Sang-Hyeon Kang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • This study was conducted to determine the optimal irrigation starting point by analyzing tree growth, physiological responses, fruit quality, and productivity in peach orchards. Seven-year-old 'Kawanakajima Hakuto' peach trees were used in an experimental field (35°49'30.4"N, 127°01'33.2"E) located within the National Institute of Horticultural and Herbal Science located in Wanju-gun, Jeollabuk-do. The irrigation starting point was set with four levels of -20, -40, -60, and -80 kPa from June to September 2022. While there were no significant differences in increase of trunk cross-section area and leaf area among treatments, shoot length and diameter decreased in the -80 kPa and -20 kPa treatments. The photosynthetic rate measured in August was highest for -60 kPa (17.7 μmol·m-2·s-1), followed by -40 kPa (15.6 μmol·m-2·s-1), -20 kPa (14.5 μmol·m-2·s-1) and -80 kPa (14.0 μmol·m-2·s-1). SPAD value measured in May and August was lower in the -80 kPa and -20 kPa treatments than in the -60 kPa and -40 kPa treatments. The harvest date reached three days earlier in the -20 kPa treatment compared to other treatments. The fruit weight was highest in the -60 kPa (379.1 g), followed by -40 kPa (344.0 g), -80 kPa (321.0 g) and -20 kPa (274.9 g). Firmness was the lowest in the -20 kPa treatment. The soluble solid content was highest in the -60 kPa treatment (13.3°Bx).The ratio of marketable fruits was highest in the -60 kPa treatment (50.7%) and lowest in the -80 kPa treatment (23.4%). In conclusion, we suggest that setting the irrigation starting point at -60 kPa could improve the fruit quality and yield in peach orchards.

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

Comparison with Growth Characteristics of Korean Melon (Cucumis melo var. makuwa) Grafted Seedlings in a Container Type Farm with LED Light and a Greenhouse under High Temperature Conditions (인공광 기반 컨테이너 육묘 시스템과 고온 조건의 플라스틱 온실 육묘에서 참외 접목묘 생육 특성 비교)

  • Wook Jin Song;Hee Woong Goo;Gyu Won Lee;Hyun Mun Kim;Kyoung Sub Park
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.22-29
    • /
    • 2024
  • This study was carried out to analyze the growth of grafted seedlings produced in a container-type farm system and a greenhouse to stably produce high-quality seedlings. For 14 days after graft-taking, the characteristics of korean melon grafted seedlings were compared by container farm and greenhouse. The container seedling system maintained a stable day/night temperature (25/20℃), relative humidity (70%), and light environment (PPFD 200µmol·m-2·s-1, photoperiod (16/8h). The difference between day and night temperature (DIF) was relatively large, with a mean temperature of 28.1/15.4℃ in the high-temperature greenhouse. Plant height of the korean melon seedling was longer in the greenhouse than in the closed seedling system, and the average SPAD value was 30.5 and 41.1 in the greenhouse and closed seedling system, respectively. To calculate the compactness of the graft seedlings, the shoot dry weight was divided by the plant height, and the value was 44.9±2.64 mg/cm and 24.4±1.56 mg/cm in the closed seedling system and the greenhouse treatment, respectively, 7 days after graft-taking. To produce high-quality seedlings during high-temperature or low-photo periods, it will be necessary to analyze the key factors that affect growth characteristics and transplanting growth and to verify the effects of the closed seedling system based on post-transplanting growth and yield.

Appropriate Working Period and Storage Characteristics Based on Residual Leaf Length of Onion (Allium cepa L.) Harvested with a Blower-type Stem Cutter (송풍식 줄기절단기에 의한 적정 양파 잎 절단 시기 및 잔여 엽장에 따른 양파 저장 특성)

  • Byeonggyu Min;Jiyoung Son;Mijin Lee;Jinseong Moon;Juhee Baek;Jaecheol Seo;Jungho Shin;Seunggwi Kwon;Soonjung Hong;Sanghee Lee
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • This study was conducted to determine the optimal working conditions when a recently developed blower-type onion stem cutter is utilized for cutting onion leaves at harvest time. The June 20 leaf cutting treatment group had the highest leaf dryness among the treatment groups (leaf dryness: 66.3%; leaf moisture content: 50.5%); the residual leaf length was 6.7 ± 3.5 cm. It is considered to have the best mechanical leaf cutting performance among the treatment groups because it is included in the optimal range of 4-10 cm. The average working speed of mechanical onion leaf cutting using the stem cutter was 0.17 m·s-1, which is approximately 3.4 times faster than the average working speed of 0.05 m·s-1 in the human leaf cutting treatment group. This is expected to save approximately 2.6 hours compared to human labor (based on one person) when working on a 10a area using this machine. In addition, the incidence of damaged bulbs in the machine leaf cutting treatment group was 1.3%, compared to 0.0% in the manual leaf cutting treatment group. This suggests that the mechanical leaf cutting treatment group had a higher average onion bulb decay rate during storage than the manual leaf cutting treatment group. When the storage characteristics of each treatment group were examined, the decay rate by bulb part (leaf connected or root connected) after 8 months of storage was higher in the treatment group with a residual leaf length of less than 5.0 cm after mechanical leaf cutting than in the treatment with a residual leaf length of more than 5.0 cm. This is thought to be due to the fact that treatments with a residual leaf length of less than 5.0 cm are more susceptible to infection by pathogens that cause decay during storage than treatments with a residual leaf length of 5.0 cm or more. Based on the results of this experiment, performance target of the experimental machine (residual leaf length after operation: 5 cm), and existing research on the optimal residual leaf length for onion harvesting, it is recommended to cut onion leaves so that the residual leaf length is 5-10 cm when using the stem cutter.