DOI QR코드

DOI QR Code

Analysis of domestic and overseas coastal groundwater management laws and policies

국내외 해안 지하수관리 법·정책 사례 분석

  • 심영규 (동아대학교 법학전문대학원) ;
  • 정일문 (한국건설기술연구원) ;
  • 장선우 (한국건설기술연구원)
  • Received : 2024.07.10
  • Accepted : 2024.08.19
  • Published : 2024.09.30

Abstract

Many coastal countries have developed and used a wide range of technologies and policy measures to protect freshwater aquifers and groundwater resources from seawater intrusion, and have established and implemented a foundation to legally and institutionally support them. This study covers coastal states in the eastern United States, the Netheland, India and Japan. The goal of this study is to analyze each country's legal and policy measures for coastal groundwater management. By introducing Jeju Island's groundwater standard level system, we aim to provide a basis for future discussions on groundwater management measures not only in Jeju Island but also in coastal areas of Korea. As a result of the analysis, despite the various contents and aspects of coastal groundwater management based on local issues and characteristics around the world, in order to achieve the common goal of securing a stable amount of groundwater withdrawal and preventing seawater intrusion and to maximize the efficiency of groundwater management, it is understood that attempts are being made to establish optimal management measures, laws, systems, and policies based on several key factors. First, considering the hydrogeological characteristics and status of coastal groundwater, a separate special management system is being established and implemented within the scope of the national groundwater management system. In addition, preventing and maintaining groundwater level decline through limiting the amount of groundwater withdrawal and preventing seawater intrusion are key policy goals and policy tools, and it is suppored by research and development. Finally, tt was found that synergy effects are being sought by using various other policy tools and measures in a complex manner.

여러 해안지역 국가들은 다양한 형태의 담수 대수층과 지하수자원을 해수 침투로부터 보호하기 위하여 매우 광범위하고 다양한 기술과 정책 수단을 개발하여 복합적으로 사용하고, 이러한 정책 목적을 실현하기 위한 법적·제도적 기반을 마련하여 시행하고 있다. 본 연구는 미국 동부지역 연안 주, 네덜란드, 일본, 인도 등 주요 연안 국가들의 해안 지하수관리를 위한 정책적 수단과 조치, 법적·제도적 기반 등 사례를 검토·분석하고, 국내 해안지역 지하수 관리제도 사례로서 제주도의 지하수 기준수위 제도를 비교 고찰함으로써 향후 제주도뿐만 아니라 우리나라 해안지역 지하수 관리방안에 대한 논의의 기반을 제공하고자 하였다. 검토·분석 결과, 전 세계 다수 국가가 해당 지역의 현안과 특성에 기반한 해안 지하수 관리제도를 다양하게 개발하여 시행하고 있는 것을 볼 수 있었다. 다만, 이러한 관리제도는 지하수 취수량의 안정적 확보 및 해수 침투 방지라는 공통 목표를 달성하고 지하수관리의 효율성을 극대화하고자 다음과 같은 몇 가지 주요 요소를 기반으로 최적의 관리방안을 모색하고 있는 것으로 파악되었다. 첫 번째, 해안 지하수의 특수한 성격과 지위를 고려하여 국가 지하수 관리체계의 범주 내에서 별도의 특별 관리체계를 수립하여 시행하고 있다. 두 번째, 지하수위 하강 방지 및 적정 지하수위 유지, 해수 침투 방지 등 핵심적인 정책목표를 달성하기 위해 지하수 취수량을 효과적으로 제한하는 기술적·정책적·법적 조치를 다양하게 수립·시행하고 있다. 세 번째, 정책 및 제도의 개발·적용은 철저하고 정확한 과학·기술적 연구·분석 데이터를 기반으로 한다. 네 번째, 다양한 기술적·정책적·제도적 수단과 조치를 혼용하여 복합적으로 활용함으로써 시너지 효과의 극대화를 도모한다. 다섯 번째, 기술과 정책, 법·제도 등의 개발 및 시행은 해당 지역과 현장을 기반으로 함으로써 지역사회의 이해와 협력을 최대한 확보하고 정책·제도의 현장 적응성과 실효성을 제고한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20240158, 신기준수위 기반 해안지역 지하수 관리 솔루션 개발).

References

  1. Barlow, P.M. (2003). Ground water in freshwater-saltwater environments of the Atlantic coast, U.S. Geological Survey Circular 1262, U.S.Geological Survey, Reston, VA, U.S.
  2. Bear, J., Cheng, A.H.D., Sorek, S., Ouazar, D., and Herrera, I. (1999). Seawater intrusion in coastal aquifers: Concepts, methods, and practices. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  3. Central Water Commission (2017). Problems of salination of land in coastal areas of India and suitable protection measures. Ministry of Water Resources, River Development & Ganga Rejuvenation, Government of India, New Delhi, India.
  4. Chung, I., Nam, W., Kim, M.G., Choi, G., Kim, G., and Park, Y. (2018). "Determination of proper probability distribution for groundwater monitoring stations in Jeju Island." Journal of Soil and Groundwater Environment, Vol. 23, No. 1, pp. 41-53.
  5. Fanning, J.L. (1999). Water use in coastal Georgia by county and source, 1997; and water-use trends, 1980-97. Georgia Geologic Survey Information Circular 104, Atlanta, GA, U.S.
  6. Fanning, J.L. (2003). Water use in Georgia by county for 2000 and water-use trends for 1980-2000. U.S. Geological Survey Information Circular 106, Atlanta, GA, U.S.
  7. Florida Department of Environmental Protection (FDEP) (2024a). Comprehensive Everglades Restoration Plan (CERP), accessed 7 July 2024, <https://floridadep.gov/eco-pro/eco-pro/content/comprehensive-everglades-restoration-plan-cerp>.
  8. Florida Department of Environmental Protection (FDEP) (2024b). Water management districts, accessed 7 July 2024, <https://floridadep.gov/owper/water-policy/content/water-managementdistricts>.
  9. Georgia Environmental Protection Division (GaEPD) (2006). Coastal Georgia water & wastewater permitting plan for managing salt water intrusion. accessed 7 July 2024, <https://epd.georgia.gov/coastal-water-study>.
  10. Georgia Water Planning (2017). 2017 coastal georgia regional water plan. State of Georgia, Department of Natural Resources. Coastal Resources Division, Atlanta, GA, U.S.
  11. Giordana, G.A., and Montginoul, M. (2006). "Policy instruments to fight against seawater intrusion in coastal aquifers: An overview." Vie et Milieu / Life & Environment, Vol. 56, No. 4, pp. 287-294.
  12. Grakist, G., Maas, K., Rosbergen, W., and Kappelhof, J. (2002). "Keeping our wells fresh." Proceeding of 17th Salt Water Intrusion Meeting, Delft, the Netherlands, pp. 337-340.
  13. Hori, S.K. (2016). "The structure of local groundwater law for sustainable groundwater policy in Japan." Laws, Vol. 5, No. 2, 19. doi: 10.3390/laws5020019.
  14. Huisman, P., Cramer, W., Ee, G. van, Hooghart, J.C., Salz, H., and Zuidema, F.C. (1998). Water in the Netherlands. Netherlands Hydrological Society (NHV), Delft, Netherlands.
  15. Kooiman, Ir. J.W., Stuyfzand, P.J., Mass, C., and Kappelhof, J.W.N.M. (2004). "Pumping brackish groundwater to prepare drinking water and keep salinizing wells fresh: A feasibility study." Proceeding of 18th Salt Water Intrusion Meeting, Cartagena, Spain.
  16. Lamm, A.J., and Huang, P. (2023). Water quality assurance act: Wh at is it and how can we talk about it? UF/IFAS Center for Publi c Issues Education, University of Florida, accessed 7 July 2024, <https://www.piecenter.com/pep/wp-content/uploads/PEP_WQAA_Final.pdf>.
  17. Lee, J., Yoon, J., Moon, Y., Kim, H., and Hwang, S. (2007). An integrated management plan for groundwater resources in the coastal areas of Korea (I). Korea Environment Institute, p. 172.
  18. Marella, R.L. (2004). Water withdrawals, use, discharge, and trends in Florida (2000). U.S. Geological Survey Scientific Investigation Report 2004-5151, U.S. Geological Survey, Tallahassee, FL, U.S.
  19. National Sea Grant Law Center (NSGLC) (2021). Overview of grou ndwater regulation, University of Mississippi School of Law, a ccessed 9 July 2024, <https://nsglc.olemiss.edu/projects/waterresources/files/overview-of-groundwater-regulation.pdf>.
  20. Nippon Koei Co., Ltd. (2022a). Theme 1-1 legislation and organization: Establishing mechanisms to respond to changing needs, Japan's experience on water resources management. Japan International Cooperation Agency, Tokyo, Japan.
  21. Nippon Koei Co., Ltd. (2022b). Theme 7 gorundwater management: securing alternative water sources along with regulations, Japan's experience on water resources management. Japan International Cooperation Agency, Tokyo, Japan.
  22. Park, W., Kang, B., Shin, W., and Kim, J. (2022). Study on the re-evaluation of the reference water level observation network and measures to respond to water level decline. 2022-15, Jeju Research Institute, p. 86.
  23. Prusty, P., and Farooq, S.H. (2020). "Seawater intrusion in the coastal aquifers of India - A review." HydroResearch, Vol. 3, pp. 61-74. doi: 10.1016/j.hydres.2020.06.001.
  24. Prusty, P., Farooq, S.H., Swain, D., and Chandrasekharam, D. (2020). "Association of geomorphic features with groundwater quality and freshwater availability in coastal regions." International Journal of Environmental Science and Technology, Vol. 17, pp. 3313-3328. doi: 10.1007/s13762-020-02706-z.
  25. Renken, R.A., Dixon, J., Koehmstedt, J., Ishman, S., Lietz, A.C., Marella, Richard L., Telis, P., Rodgers, J., and Memberget, S. (2005). Impact of anthropogenic development on coastal ground-water hydrology in Southeastern Florida, 1900-2000. U.S. Geological Survey Circular 1275, Reston, VA, U.S.
  26. South Florida Water Management District (SFWMD) (2024). the United States, accessed 7 July 2024, <https://www.sfwmd.gov/>.
  27. Tokyo Metropolitan Government (TMG) (2021). Actual conditions of groundwater extraction in Tokyo in 1989, Tokyo, Japan
  28. United Nations General Assembly (UNGA) (2015). Transforming o ur world: The 2030 Agenda for Sustainable Development, Res olution adopted by the General Assembly on 25 September 20 15, A/RES/70/1, accessed 7 July 2024, <https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf>.
  29. Vengadesan, M. and Lakshmanan, E. (2019). "Management of coast al groundwater resources." Coastal Management, Edited by K rishnamurthy, R.R., Jonathan, M.P., Srinivasalu, S., and Glaes er, B., Academic Press, pp. 383-397. doi: 10.1016/b978-0-12-810473-6.00018-2.