본 논문에서는 반복 학습 제어의 수렴 특성에 대해 다룬다. 우선, 기존의 ${\lambda}$-노옴을 사용하여 반복 학습 법칙의 수렴성을 증명한 것과는 달리 상한노옴(sup-norm)을 사용한 수렴성 증명방법을 보인다. 또한, 구간화된 학습 방법을 사용한 반복 학습 법칙을 제안하고, 임의의 시간구간에 대해 상한노옴 관점에서 출력 오차의 단조감소적 수렴 특성을 얻을 수 있음을 보인다. 마지막으로, 제안한 구간화된 학습 방법에서의 나누어진 시간 구간이 학습 이득값에 의해 영향을 받는다는 것을 보이고, 적절한 학습 이득값을 선택함에 따라 학습 속도가 증가함을 보인다. 제안한 반복 학습 법칙의 유효성을 보이기 위하여 두 가지 수치 예를 보인다.
저자는 등각사상을 구하기 위한 기존의 여러 Theodorsen 방정식의 해법 중 가장 유효한 해법으로 알려져 있는 Wegmann의 방법을 다룬바 있다. Wegmann의 방법으로 수치실험을 한 결과 난이도가 높다고 예상되는 문제에 있어 수렴했다가 발산을 하는 불안정현상이 나타났으며 수렵하지 않는 불안정현상의 원인을 분석하여 저주파필터를 적용한 새로운 반복법을 제안하였다. 원래의 Wegmann 반복법으로는 발산하는 모튼 문제에 있어서 새로 제안한 방법에 의해서 수렴하는 수치실험 결과를 얻었는데 본 논문에서는 저주파필터를 적용한 Wegmann해법에 의해 실험적으로 수렴한 결과를 Fourier 분석기법에 의해 이론적으로 증명한다.
저자는 등각사상을 추하기 위한 기존의 여러 Theodorsen 방정식의 해법 중 가장 유효한 해법으로 알려져 있는 Wegmann의 방법을 다룬바 있다. Wegmann의 방법으로 수치실험을 한 결과 난이도가 높다고 예상되는 문제에 있어 수렴했다가 발산을 하는 불안정현상이 나타났으며 수렴하지 않는 불안정현상의 원인을 분석하여 저주파필터를 적용한 새로운 반복법을 제안하여 Wegmann 방법으로는 발산하는 모든 문제에 있어서 수렴하는 수치실험 결과를 얻었다[1]. 본 논문에서는 저주파필터를 적용한 해법에 의해 수치적으로 수렴한 결과를 이론적으로 증명한다.
본 논문에서는 쉬프트를 갖는 부분공간 반복법의 제한조건을 제거하여 수치적으로 안정한 고유치해석 방법을 제안 하였다. 쉬프트를 갖는 부분공간 반복범의 주된 단점은 특이성 문제 때문에 어떤 고유치에 근접한 쉬프트를 사용할 수 없어서 수렴성이 저하될 가능성이 있다는 점이다. 본 논문에서는 부가조건식을 이용하여 위와 같은 특이성 문제를 수렴성의 저하없이 해결하였다. 이 방법은 쉬프트가 어떤 고유치와 같은 경우일지라도 항상 비특이성인 성질을 갖고 있다. 이것은 제안방법의 중요한 특성중의 하나이다. 제안방법의 비특이성은 해석적으로 증명되었다. 제안방법의 수렴성은 쉬프트를 갖는 부분공간 반복법의 수렴성과 거의 같고, 두 방법의 연산횟수는 구하고자 하는 고유치의 개수가 많은 경우에 거의 같다. 제안방법의 효율성을 증명하기 위하여, 두개의 수치예제를 고려하였다.
본 논문에서는 중복근을 갖는 구조물에 대한 효율적이고 수치적으로 안정한 고유치해석 방법을 제안하였다. 제안방법은 널리 알려진 쉬프트를 갖는 부분공간 반복법을 개선한 방법이다. 쉬프트를 갖는 부분공간 방법의 주된 단점은 특이성 문제 때문에 어떤 고유치에 근접한 쉬프트를 사용할 수 없어서 수렴성이 저하될 가능성이 있다는 점이다. 본 논문에서는 부가조건식을 이용하여 위와 같은 특이성 문제를 수렴성의 저하없이 해결하였다. 이 방법은 쉬프트가 어떤 단일 고유치 또는 중복 고유치와 같은 경우일지라도 항상 비특이성인 성질을 갖고 있다. 이것은 제안방법의 중요한 특성중의 하나이다. 제안방법의 비특이성은 해석적으로 증명되었다. 제안방법의 수렴성은 쉬프트를 갖는 부분공간 반복법의 수렴성과 거의 같고, 두 방법의 연산횟수는 구하고자 하는 고유치의 개수가 많은 경우에 거의 같다. 제안방법의 효율성을 증명하기 위하여, 두개의 수치예제를 고려하였다.
모의 담금질 방법은 널리 사용되는 최적화 알고리즘들 중의 하나로서, 그 해의 수렴성이 수학적으로 증명되어 있는 장점이 있다. 하지만 원래의 모의 담금질 방법은 수렴 속도가 매우 느리기 때문에 복잡한 문제에 적용하기 힘들고, 이를 해결하기 위해서 빠른 모의 담금질 방법과 같은 다양한 방법이 연구되고 있다. 본 논문에서는, greedy 선택방법을 적용한 모의 담금질 방법을 제안하고, 이 알고리즘이 연속적인 공간에서의 최적화 문제에 대해서 전역 최적점을 찾아낸다는 것을 확률적으로 증명한다. greedy 선택방법은 무조건 좋은 해를 선택하기 때문에, 확률적으로 좋지 않은 해를 선택할 가능성이 있는 Metropolis 선택방법에 비해 빠른 수렴속도를 얻을 수 있다. 컴퓨터 모의 실험 결과, greedy 선택방법을 사용한 모의 담금질 방법이 기존의 빠른 모의 담금질 방법과 비슷한 성능을 보이는 해를 더 빠른 속도로 찾을 수 있음을 보인다. 또한, greedy 선택방법에서는 선택 가능한 상태들의 비용함수 값의 우열관계만을 이용하여 선택하기 때문에 비용 함수의 크기 조정에 무관하게 적용할 수 있다는 장점이 있다.
최근에 제안된 감독 지식을 융합하는 강화 학습 기법인 potential-based RL 기법의 효용성은 이론적 최적 정책으로의 수렴성 보장으로 증명되었고, policy-reuse RL 기법의 우수성은 감독지식을 융합하지 않는 기존의 강화학습과 실험적인 비교를 통하여 증명되었지만, policy-reuse RL 기법을 potential-based RL 기법과 비교한 연구는 아직까지 제시된 바가 없었다. 본 논문에서는 potential-based RL 기법과 policy-reuse RL 기법의 실험적인 성능 비교를 통하여 기법이 policy-reuse RL 기법이 policy-reuse RL 기법에 비하여 더 빠르게 수렴한다는 것을 보이며, 또한 policy-reuse RL 기법의 성능은 재사용하는 정책의 optimality에 영향을 받는다는 것을 보인다.
본 논문에서는 다입력 다출력 비선형 시스템에 대한 관측기 설계 방법을 제안한다. 먼저 관측기 설계를 위한 삼각구조를 갖는 비선형 시스템을 정의한다. 또한 제안한 관측기의 안정도를 증명하는데 중요한 역할을 하는 가관측성 행렬을 다입력 다출력 시스템으로 확장한다. 확장된 가관측성 행렬을 이용하여 상태변수와 시스템 입력의 유계 조건하에서 제안한 관측기가 로컬 영역에서 지수 함수적 수렴성을 가짐을 증명한다. 마지막으로 제안한 결과의 유효성을 증명하기 위하여 모의실험 예제를 제공한다.
Separating Hyperplane의 기하학적인 성질을 이용하여, 일반적인 Closed Convex Set들의 교집합에 속하는 점을 찾아가는 방법을 제안하고, 교집합에 속하는 점을 찾아가는 과정에서 그 교집합의 공집합 여부를 판정할 수 있는 방법을 제안하였다. 이 기법은 기존의 방법들이 가정하는 수렴조건보다 더 일반적인 조건 하에서도 수렴성을 갖는 것을 증명할 수 있었으며, 그 교집합의 공집합 여부를 선형부동식 해의 존재 유무로 판정할 수 있는 방법을 제시하였다. 몇가지 특수한 경우의 Convex Set들의 경우에 대한 기법의 적용 결과도 알아 보기로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.