• Title/Summary/Keyword: 수량효율

Search Result 819, Processing Time 0.029 seconds

Effects of Processing Conditions on the Nutritional Quality of Seafood -1. Effects of Heating and Storage Conditions on Protein Quality of Surimi Products- (해양식량자원의 가공조건별 영양적 품질평가 -1. 가열 및 저장조건에 따른 수산연제품의 단백질 품질변화-)

  • RYU Hong-Soo;MOON Jeung-Hye;PARK Jeung-Hyeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.282-291
    • /
    • 1994
  • Optimal processing conditions and shelf-life of steamed kamaboko made from Alaska pollock surimi were investigated, including protein digestibility, computed protein efficiency ratio (C-PER), trypsin inhibitor content and protein solubility. Steamed kamaboko containing $5\%$ starch and $33\%$ water in pollock surimi showed the best protein quality in terms of C-PER and protein digestibility. Steaming could not give any significant advantage over kamaboko protein digestibility but a higher C-PER resulted from steamed kamaboko. All kamaboko products had trypsin content of 1.4 to $2.0mg\%$ which was $10\%$ of total trypsin inhibitor levels in frozen pollock meat. A two stage steaming process, the first at $40^{\circ}C$ for 20min followed by a second 10min steaming period at $95^{\circ}C$, was found to be the most effective way of the most effective heating process for kamaboko protein quality. C-PERs of marketed Korean surimi products ranged from $2.8{\sim}2.9$ for steamed kamaboko and $2.9{\sim}3.2$ for crab meat analog which were superior to ANRC casein(2.5). Measured protein digestibility of all products were ranged from 86 to $89\%$. VBN and protein solubility data suggest Korean marketed surimi products could have a shelf-life of 15 days at $4^{\circ}C$ for crab meat analog and 20 days at $4^{\circ}C$ for steamed kamaboko.

  • PDF

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

Effects of Cyanobacterial Bloom on Zooplankton Community Dynamics in Several Eutrophic Lakes (부영양호수에서 남조류 bloom이 동물플랑크톤 군집변화에 미치는 영향)

  • Kim, Bom-Chul;Choi, Eun-Mi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.366-373
    • /
    • 2000
  • Toxin production and low digestibility of cyanobacteria are known to cause low exploitability of cyanobacteria by zooplankton. In this study, we compared relative tolerance and compatibility of zooplankton taxa in eight eutrophic lakes, exposed to frequent cyanobacterial blooms, uring the summer season of 1999. Microcystis, Anabaena, Oscillatoria and Phormidium were common cyanobacteria in all lakes. with relatively lower $NO_3-N$ concentration (<0.2 mgN/l) and TN/TP ratio (<20), compared with other lakes where colonial cyanobacteria dominated. Rotifers were dominant zooplankton in most lakes, and among them, Keratella, Polyarthra and Hexathra were common. The laboratory feeding experiment showed that relative copepods that greatly decreased (90%) after 4 day when cyanobacteria were used as the food source of zooplankton, while rotifers gradually increased with the change of dominant taxa from Keratella through Pompholyx to Monostyla. These results suggest that rotifers may be capable of coexisting with cyanobacteria by exploiting them for the food source.

  • PDF

Dynamics of Inorganic Nutrients and Phytoplankton in Shihwa Reservoir (시화호에서 무기영양염과 식물플랑크톤의 동태)

  • Kim, Dong-Sup;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.109-118
    • /
    • 2000
  • The dynamics of inorganic nutrients and phytoplankton population were examined at eight stations of Shihwa Reservoir, which situated near the cities newly constructed and the industrial complex of West-sea in Korea, from January to December 1999. Among environmental factors, average concentration of $NH_4$, SRP and SRSi were $522.7\;{\mu}g\;N/l$, $9.8\;{\mu}g\;N/l$ and $0.26\;{\mu}g\;Si/l$, respectively. Water quality was extremely deteriorated by a great amount of pollutants load into inner reservoir after the event of rainfall. Nutrients concentration was suddenly decreased toward the lower part. While $NO_3$ concentration did not much varied among stations, but it was relatively high in winter season. Chlorophyll-a concentration was high at the upper part of the reservoir, with average of $37.2\;{\mu}/l$, and closely related to the fluctuation of $NH_4$, SRP and SRSi concentrations. The phytoplankton development in the water column was dominated by diatom (autumn), prasinoid (winter) and dinoflagellate (summer). Dominant phytoplankton were composed to Skeletonema costatum of diatom, Prorocentrum minimum of dinoflagellate, Chroomonas spp. of cryptomonad, Eutreptiella gymnastica of euglenoid and Pyramimonas spp. of prasinoid. The large bloom of phytoplankton at the upper zone of the Shihwa Reservoir after inflow of a seawater were consistently observed. In consequence, water quality management of the inlet stream was assessed to be very important and urgent.

  • PDF

Studies on the Application of Cattle Slurry in Grassland III. Grazing preference as affected by application time of cattle slurry on pasture (혼파초지에서 액상구비 시용에 관한 연구 III. 방목이용 초지에서 액상구비 시용시기에 따른 가축기호성 비교)

  • Kim, Jae-Kyu;Seo, Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 1993
  • This experiment was carried out to determine the effects of application time of cattle slurry on grazing pasture on the grass growth, dry matter yield, nutritive value, animal preference, and efficiency of pasture utilization. Four different application times of slurry(right now after grazing, 5th day, 10th day, and 15th day after grazing), and a no-slurry(control) plot were designed, 1991∼1992. Annual application amount of slurry was 40 ㎥/ha, and slurry was applicated in spring(2 times), summer and autumn. Total NPK fertilizer applicated were same as 280, 200 and 240 kg/ha in all treatment, respectively. The pasture was grazed with growing beef cattle(initial body wt.; ca. 250 kg) at every 30∼35 cm of plant height. The grass height, dry matter yield, crude protein yield, and other nutritive value were not different among treatments. However, the animal preference and efficiency of pasture utilization showed significant difference by application time of slurry. The highest grazing preference (1: the worst∼9: the best). and utilization efficiency (0∼100%) were observed by application time of right now after grazing (7.8, 76%), which was same to control(7.8, 77%), and followed by 5th day after grazing(7.3, 74%) and l0th day after grazing(6.9, 71%). But the preference and pasture utilization were greatly decreased at application time of cattle slurry of 15th day alter grazing(5.5, 60%). From the above results, the optimum application time of cattle slurry on grazing pasture to enhance animal preference, and efficiency of pasture utilization was within 5 days after grazing (less than 13.6 cm of plant height), and within 10 days after grazing (less than 18.5 cm of plant height) at least.

  • PDF

Effects of Sowing and Harvesting Times on Feed Value and Functional Component of Triticale (x Triticosecale Wittmack) (트리티케일 파종시기 및 수확시기가 사일리지 사료가치와 기능성 성분에 미치는 영향)

  • Jisuk Kim;Kyungyoon Ra;Yul-Ho Kim;Myoung Ryoul Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.319-325
    • /
    • 2022
  • Triticale forage has the highest yield of all winter forage crops, including rye, and a cold tolerance within an average low temperature of -10℃ in January. Therefore, this study analyzed the effects of sowing and harvesting times on the feed value and functional components of triticale to optimize the use and supply of triticale as livestock fee Room temperature' can vary widely with climate, season, and time of day. In order to clearly state the conditions of the study in a manner that facilitates replication by other researchers, please consider using an approximate temperature range instead. Seeds of the triticale 'Joseong' were sown during the fall of 2021 (October 20th) and spring of 2022 (March 7th). The triticale was harvested at the following growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The moisture content of each harvested triticale was adjusted to approximately 60%, and the triticale was fermented for silage for 40 days at ambient temperature under anaerobic conditions. We measured the pH and organic acid content of each silage to determine the feed value and functional component. The lactic acid content of the triticale silage harvested at the seedling stage sown in both fall and spring (1.61%, 1.63%) was the highest among all the silages. The octacosanol content in the silages of both fall-sown and spring-sown triticale harvested at the seedling stage (0.38, 0.27 mg/ml) was the highest. Overall, the results revealed that harvesting time had a greater impact on the feed value and functional components of triticale silage than sowing time.

Development of Cropping System Involving a Two-Year Rotation of Three Upland Crops using Paddy Soil in the Middle Plain Area (중부지역 평야지 논 이용 밭작물 2년 3모작 작부모형 개발)

  • Kang-Bo Shim;Hyun-Min Cho;Myeon-Na Shin;Areum Han;Mi-Jin Chae;Jeong-Ju Kim;Seuk-Ki Lee;Weon-Tai Jeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.199-210
    • /
    • 2022
  • This study aimed to develop a cropping system to use limited crop-land with optimum efficiency, while considering management from farmers. To establish the cropping system involving a two-year rotation of three crops, three types of cropping system were evaluated in Suwon (Seogcheon series) and Anseong (Geumcheon series) in the middle plain area using six crops from 2018 to 2019: maize-perilla-onion, potato-sesame-garlic, and maize-sesame-onion. The crop productivity and income of the cropping systems involving food-, oilseed-, and horticultural crops were analyzed, and the optimal cropping system was reviewed. The total yield of each crop was as follows: maize 1,281 kg, potato 4,837 kg, perilla 125 kg, sesame 120 kg, onion 6,503 kg, and garlic 1,027 kg per 10a. However, in terms of gross profit, the potato was more than 3.8 times more profitable than corn, sesame was 1.8 times more profitable than perilla, and garlic was more than 2.8 times more profitable than onions. As a result, in terms of net income, the potato-sesame-garlic cropping system produced the highest income per unit area. Sesame seedlings were planted after the potato harvest, thereby solving the problem of competition between the first and last crops. Overall, this study confirmed that the potato-sesame-garlic cropping system, a two-year rotation of three crops, contributed to the improvement of upland crop productivity and farmers' income and was an overall effective cropping system.

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

Evaluation of Varietal Difference and Environmental Variation for Some Characters Related to Source and Sink in the Rice Plants (벼의 Source 및 Sink형질의 품종간차이와 환경변이의 평가)

  • Choi, Hae-Chun;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.460-470
    • /
    • 1985
  • Experiments were carried out to evaluate the standard gravity in determining potential kernel size and to determine the effective sampling way by analyzing intra - and inter - plant variations for some source and sink characters using eleven semi-dwarf indica and three japonica cultivars including four semi-dwarf indica nearisogenic lines. Also, additional experiments were conducted to understand yearly variation and variety x year interaction effects for ten characters related to source and sink and to characterize the varietal difference of pre- and post-heading self-competition employing three parental varieties and their F$\sub$5/ progenies in 1982 and 1983. It is desirable to determine the potential kernel size by average kernel wight of rice grains showing above 1.15 specific gravity. There was significant difference in leaf area per tiller, spikelets and sink capacity per panicle among vigorous, intermediate and inferior tillers classified by differentiated order and vigorousness. Although it was difficult to find out any significant difference in grain-fill ratio, ratio of perfectly ripened grain, potential kernel size and sink/source ratio between vigorous and intermediate tillers, there was big difference between them and inferior one. The coefficients of variation within each tiller-group for some characters related to source and sink were larger with the order of vigorous tillers < intermediate one '||'&'||'lt; inferior one, and the average heritability of all characters, evaluated by the ratio of varietal variance (equation omitted) to total variance (equation omitted), were higher with the order of inferior tillers '||'&'||'lt; intemediate one '||'&'||'lt; superior one. Therefore, it is desirable to sample the vigorous tillers to represent the varietal difference of these traits. '82-'83 year variations of three parental cultivars were significant for all traits except for leaf area/tiller, panicles/hill, leaf area index and rough rice yield. The characters showing highly significant variance of variety x year interaction were growth duration from transplanting to heading, leaf area/tiller, sink/source ratio, sink capacity/panicle and grain yield. Generalized yearly response of three parental varieties (Suweon 264, Raegyeong, IR1317-70-l) and their F$\sub$5/ progenies on the 1st and 2nd principal components extracted from ten source and sink characters generally exhibited reduction in both source and sink. However, there were diverse variety x year interactions such as progenies showing similar reaction with their parents and intermediate or recombinational yearly response with little or considerable yearly movement on the four-dimensional planes of the two upper principal components between 1982 and 1983. Sink characters revealing highly significant border effect were grain-fill ratio, spikelets and sink capacity per panicle. Among them the latter two especially showed significant variety x border effect interaction. Self-competition characterized by relative weakness of inside plant's sink characters compared to the border one was more severe during the reproductive stage before heading than maturing stage. Though the larger sink capacity per panicle generally disclosed the severer self-competition, some lines (like Suweon 264) revealed severe self-competition with small sink capacity while a few others showed tender self-competition in spite of big sink capacity per panicle.

  • PDF