• Title/Summary/Keyword: 수동적 공격

Search Result 81, Processing Time 0.027 seconds

Blockchain Based Data-Preserving AI Learning Environment Model for Cyber Security System (AI 사이버보안 체계를 위한 블록체인 기반의 Data-Preserving AI 학습환경 모델)

  • Kim, Inkyung;Park, Namje
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.125-134
    • /
    • 2019
  • As the limitations of the passive recognition domain, which is not guaranteed transparency of the operation process, AI technology has a vulnerability that depends on the data. Human error is inherent because raw data for artificial intelligence learning must be processed and inspected manually to secure data quality for the advancement of AI learning. In this study, we examine the necessity of learning data management before machine learning by analyzing inaccurate cases of AI learning data and cyber security attack method through the approach from cyber security perspective. In order to verify the learning data integrity, this paper presents the direction of data-preserving artificial intelligence system, a blockchain-based learning data environment model. The proposed method is expected to prevent the threats such as cyber attack and data corruption in providing and using data in the open network for data processing and raw data collection.

Effective Defense Mechanism Against New Vulnerability Attacks (신규 취약점 공격에 대한 효율적인 방어 메커니즘)

  • Kwak, Young-Ok;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.499-506
    • /
    • 2021
  • Hackers' cyber attack techniques are becoming more sophisticated and diversified, with a form of attack that has never been seen before. In terms of information security vulnerability standard code (CVE), about 90,000 new codes were registered from 2015 to 2020. This indicates that security threats are increasing rapidly. When new security vulnerabilities occur, damage should be minimized by preparing countermeasures for them, but in many cases, companies are insufficient to cover the security management level and response system with a limited security IT budget. The reason is that it takes about a month for analysts to discover vulnerabilities through manual analysis, prepare countermeasures through security equipment, and patch security vulnerabilities. In the case of the public sector, the National Cyber Safety Center distributes and manages security operation policies in a batch. However, it is not easy to accept the security policy according to the characteristics of the manufacturer, and it takes about 3 weeks or more to verify the traffic for each section. In addition, when abnormal traffic inflow occurs, countermeasures such as detection and detection of infringement attacks through vulnerability analysis must be prepared, but there are limitations in response due to the absence of specialized security experts. In this paper, we proposed a method of using the security policy information sharing site "snort.org" to prepare effective countermeasures against new security vulnerability attacks.

Flying Cake: An Augmented Game on Mobile Device (Flying Cake: 모바일 단말기를 이용한 실감형 게임)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.79-94
    • /
    • 2007
  • In the ubiquitous computing age which uses a high quantity network, mobile devices such as wearable and hand-held ones with a small tamers and a wireless communication module will be widely used in near future. Thus, a lot of researches about an augmented game on mobile devices have been attempted recently. The existing augmented games used a traditional 'backpack' system and a pattern marker. The 'backpack' system is expensive, cumbersome and inconvenient to use, and because of the pattern marker, it is only possible to play the game in the previously installed palace. In this paper, we propose an augmented game called Flying Cake using a face region to create the virtual object(character) without the pattern marker, which manually indicates an overlapped location of the virtual object in the real world, on a small and mobile PDA instead of the cumbersome hardware. Flying Cake is an augmented shooting game. This game supplies us with two types: 1) a single player which attacks a virtual character on images captured by a camera in an outdoor physical area, 2) dual players which attack the virtual character on images which we received through a wireless LAN. We overlap the virtual character on the face region using a face detection technique, and users play Flying Cake though attacking the virtual character. Flying Cake supplies new pleasure to flayers with a new game paradigm through an interaction between the user in the physical world captured by the PDA camera and the virtual character in a virtual world using the face detection.

Efficient Coverage Guided IoT Firmware Fuzzing Technique Using Combined Emulation (복합 에뮬레이션을 이용한 효율적인 커버리지 가이드 IoT 펌웨어 퍼징 기법)

  • Kim, Hyun-Wook;Kim, Ju-Hwan;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.847-857
    • /
    • 2020
  • As IoT equipment is commercialized, Bluetooth or wireless networks will be built into general living devices such as IP cameras, door locks, cars and TVs. Security for IoT equipment is becoming more important because IoT equipment shares a lot of information through the network and collects personal information and operates the system. In addition, web-based attacks and application attacks currently account for a significant portion of cyber threats, and security experts are analyzing the vulnerabilities of cyber attacks through manual analysis to secure them. However, since it is virtually impossible to analyze vulnerabilities with only manual analysis, researchers studying system security are currently working on automated vulnerability detection systems, and Firm-AFL, published recently in USENIX, proposed a system by conducting a study on fuzzing processing speed and efficiency using a coverage-based fuzzer. However, the existing tools were focused on the fuzzing processing speed of the firmware, and as a result, they did not find any vulnerability in various paths. In this paper, we propose IoTFirmFuzz, which finds more paths, resolves constraints, and discovers more crashes by strengthening the mutation process to find vulnerabilities in various paths not found in existing tools.

Concept and Expression Method of 'Fun' Presented in Fashion Design (패션디자인에서'재미'의 개념과 표현방식)

  • Jang, Nam-Kyung
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.225-236
    • /
    • 2005
  • As a fresh trial using humorous items to escape from economic recession and uncertain state of mind regarding politics and society, fun is emerging as a keyword in design area. This study classified various use of fun reflected in modern fashion design according to the theme, and analyzed the mod of expression to identify formative characteristics. Through these processes, this study built conceptual structure of fun in fashion design. 412 fashion designs which represent fun were collected from 2001 $S/S{\sim}2005$ F/W collections. Data were analyzed and categorized. Results showed that the theme of fun in the modern fashion design could be classified into humor, kidult, irony, satire/parody, storytelling, and play. The design elements mainly used were color silhouette, letter, object, and drawing, while the design principles were distortion/exaggeration, incongruity, and repetition. In addition, these expressions were related to the traditional humor theory: incongruity-resolution, superior, and relief theories. The fun in modern fashion design has such value as affirmation, warmness, entertainment, youth, contradiction, surprise, deviate, allusion, attack, and description, Finally, in regard to the subject, the fun provides active experience like play as well as passive acceptance.

  • PDF

An Efficient Dynamic Group Key Agreement for Low-Power Mobile Devices (저전력 모바일 장치에 적합한 효율적인 동적 그룹 키 동의)

  • Cho Seokhyang;Nam Junghyun;Kim Seungjoo;Won Dongho;Lee Hyejoo;Choi Jinsoo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.157-168
    • /
    • 2005
  • Group key agreement protocols are designed to provide a group of parties securely communicating over a public network with a session key. The mobile computing architecture is asymmetric in the sense of computational capabilities of participants. That is, the protocol participants consist of the stationary server(application servers) with sufficient computational Power and a cluster of mobile devices(clients) with limited computational resources. It is desirable to minimize the amount of computation performed by each group member in a group involving low-power mobile devices such as smart cards or personal digital assistants(PDAs). Furthermore we are required to update the group key with low computational costs when the members need to be excluded from the group or multiple new members need to be brought into an existing group. In this paper, we propose a dynamic group key protocol which offers computational efficiency to the clients with low-power mobile devices. We compare the total communicative and computational costs of our protocol with others and prove its suity against a passive adversary in the random oracle model.

An Analysis of Intrusion Pattern Based on Backpropagation Algorithm (역전파 알고리즘 기반의 침입 패턴 분석)

  • Woo Chong-Woo;Kim Sang-Young
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.93-103
    • /
    • 2004
  • The main function of the intrusion Detection System (IDS) usee to be more or less passive detection of the intrusion evidences, but recently it is developed with more diverse types and methodologies. Especially, it is required that the IDS should process large system audit data fast enough. Therefore the data mining or neural net algorithm is being focused on, since they could satisfy those situations. In this study, we first surveyed and analyzed the several recent intrusion trends and types. And then we designed and implemented an IDS using back-propagation algorithm of the neural net, which could provide more effective solution. The distinctive feature of our study could be stated as follows. First, we designed the system that allows both the Anomaly dection and the Misuse detection. Second, we carried out the intrusion analysis experiment by using the reliable KDD Cup ‘99 data, which would provide us similar results compared to the real data. Finally, we designed the system based on the object-oriented concept, which could adapt to the other algorithms easily.

  • PDF

A Multistage Authentication Strategy for Reliable N-to-N Communication in CGSR based Mobile Ad Hoc Networks (CGSR 기반의 이동 애드 흑 네트워크에서 신뢰성 있는 통신을 위한 노드간 인증 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.659-667
    • /
    • 2005
  • A Mobile Ad Hoc Network(MANET) is a multi hop wireless network with no prepared base stations or centralized administrations, where flocks of peer systems gather and compose a network. Each node operates as a normal end system in public networks. In addition to it, a MANET node is required to work as a router to forward traffic from a source or intermediate node to others. Each node operates as a normal end system in public networks, and further a MANET node work as a router to forward traffic from a source or intermediate node to the next node via routing path. Applications of MANET are extensively wide, such as battle field or any unwired place; however, these are exposed to critical problems related to network management, node's capability, and security because of frequent and dynamic changes in network topology, absence of centralized controls, restricted usage on network resources, and vulnerability oi mobile nodes which results from the special MANET's character, shared wireless media. These problems induce MANET to be weak from security attacks from eavesdropping to DoS. To guarantee secure authentication is the main part of security service In MANET because networks without secure authentication are exposed to exterior attacks. In this paper, a multistage authentication strategy based on CGSR is proposed to guarantee that only genuine and veritable nodes participate in communications. The proposed authentication model is composed of key manager, cluster head and common nodes. The cluster head is elected from secure nodes, and key manager is elected from cluster heads. The cluster head will verify other common nodes within its cluster range in MANET. Especially, ID of each node is used on communication, which allows digital signature and blocks non repudiation. For performance evaluation, attacks against node authentication are analyzed. Based on security parameters, strategies to resolve these attacks are drawn up.

A Study on Hybrid Fuzzing using Dynamic Analysis for Automatic Binary Vulnerability Detection (바이너리 취약점의 자동 탐색을 위한 동적분석 정보 기반 하이브리드 퍼징 연구)

  • Kim, Taeeun;Jurn, Jeesoo;Jung, Yong Hoon;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.541-547
    • /
    • 2019
  • Recent developments in hacking technology are continuing to increase the number of new security vulnerabilities. Approximately 80,000 new vulnerabilities have been registered in the Common Vulnerability Enumeration (CVE) database, which is a representative vulnerability database, from 2010 to 2015, and the trend is gradually increasing in recent years. While security vulnerabilities are growing at a rapid pace, responses to security vulnerabilities are slow to respond because they rely on manual analysis. To solve this problem, there is a need for a technology that can automatically detect and patch security vulnerabilities and respond to security vulnerabilities in advance. In this paper, we propose the technology to extract the features of the vulnerability-discovery target binary through complexity analysis, and select a vulnerability-discovery strategy suitable for the feature and automatically explore the vulnerability. The proposed technology was compared to the AFL, ANGR, and Driller tools, with about 6% improvement in code coverage, about 2.4 times increase in crash count, and about 11% improvement in crash incidence.

A Real-Time and Statistical Visualization Methodology of Cyber Threats Based on IP Addresses (IP 주소 기반 사이버공격 실시간 및 통계적 가시화 방법)

  • Moon, Hyeongwoo;Kwon, Taewoong;Lee, Jun;Ryou, Jaecheol;Song, Jungsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.465-479
    • /
    • 2020
  • Regardless of the domestic and foreign governments/companies, SOC (Security Operation Center) has operated 24 hours a day for the entire year to ensure the security for their IT infrastructures. However, almost all SOCs have a critical limitation by nature, caused from heavily depending on the manual analysis of human agents with the text-based monitoring architecture. Even though, in order to overcome the drawback, technologies for a comprehensive visualization against complex cyber threats have been studying, most of them are inappropriate for the security monitoring in large-scale networks. In this paper, to solve the problem, we propose a novel visual approach for intuitive threats monitoring b detecting suspicious IP address, which is an ultimate challenge in cyber security monitoring. The approach particularly makes it possible to detect, trace and analysis of suspicious IPs statistically in real-time manner. As a result, the system implemented by the proposed method is suitably applied and utilized to the real-would environment. Moreover, the usability of the approach is verified by successful detecting and analyzing various attack IPs.