• Title/Summary/Keyword: 송풍소음

Search Result 62, Processing Time 0.032 seconds

Aero-acoustic Performance Analysis Method of Regenerative Blower (재생형 송풍기의 공력음향학적 성능 해석 방법)

  • Lee, Chan;Kil, Hyun Gwon;Kim, Gang Chun;Kim, Jun Gon;Ma, Jae Hyun;Chung, Kyung Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.15-20
    • /
    • 2013
  • An aero-acoustic performance analysis method of regenerative blower is developed as one of the FANDAS codes. The aerodynamic performance of regenerative blower is predicted by using momentum exchange theory coupled with pressure loss and leakage flow models. Based on the performance prediction results, the noise level and spectrum of regenerative blower are predicted by discrete frequency and broadband noise models. The combination of the performance and the noise prediction methods gives aero-acoustic performance map and noise spectrum analysis results, which are well-agreed with the actual measurement results within a few percent relative error.

Eigenvalue Analysis of a Blower Impeller Using Cyclic Symmetry (송풍기 임펠러의 순환대칭성을 이용한 고유치해석)

  • 김창부;안영철
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.523-530
    • /
    • 2000
  • In this paper we present an efficient method for finite element vibration analysis of a structure with cyclic symmetry and applied it to calculating the natural vibration characteristics for a blower impeller. Blower impeller having a cyclically symmetric structure is composed of circumferentially repeated substructures., The whole-structure is partitioned into substructures and then finite element vibration analysis is performed for a substructure using transformed equations for each number of nodal diameter which are derived from discrete Fourier transform in consideration of the cyclic symmetry. natural vibration characteristics for three kinds of models which are blower impeller without support ring with small support ring and with large support ring are numerically analyzed and compared. Accuracy and efficiency of the present method are verified by comparison of results of the analysis with substructure and with whole-structure. Also the results of the analysis by cyclic symmetry module(SOL 115) of MSC/NASTRAN are presented and compared.

  • PDF

A Study on Vibration Reduction of an Industrial Fan (산업용 송풍기의 진동저감에 관한 연구)

  • 송승훈;김회룡;정진태
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.457-464
    • /
    • 2000
  • Vibrations of a fan are often generated by mechanical unbalance magnetic force and air flow. These vibrations depend on the design of a fan the machining accuracy of each element and assembled conditions. An experimental study is carried out to reduce the vibration and noise of an industrial fan in this paper. In order to identify the vibration sources of a fan the signal analysis and system analysis are performed, It is shown that the industrial fan studied in this paper has a natural frequency at 144 Hz and resonance occurs when the running speed of the fan is 1750 rpm. The results may be helpful to design a fan with low vibration and noise.

  • PDF

The Noise Reduction of Industrial Blower due to Close Type Enclosure (밀폐형 방음상자에 의한 산업용 송풍기 소음 저감)

  • Cho, Tae-Jea
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.128-132
    • /
    • 2008
  • The noise levels and individual employee noise exposure levels within a factory will determine the need for hearing conservation program. The difficulty in not having an effective hearing conservation program is the risk of hearing loss that employees may sustain. In the last few years the claims for hearing loss compensation have grown due to class action litigation brought against the employer and companies that have equipment in the factory alleged to have caused hearing loss. The Blower in the factory generates the noise of 98.3dB(A) in the frequency range of 2,000Hz, which may cause occupational hearing loss. By designing close type enclosures which are made of absorption material, about 24.4dB(A) reduction has been in the factory. It is demonstrated that this kind of enclosures can be effectively used to reduce the noise in the factory.

Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan (축류송풍기 부착형 공냉식 열교환기의 진동저감)

  • 정구충;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.163-168
    • /
    • 2001
  • Vibration problems occurred in an air cooled heat exchanger with axial flow fan for a petrochemical plant were investigated. Experimental field test and theoretical verification were performed. To find the main cause of the high vibration of the fan at the air inlet of the axial fan, the frequency spectrum was measured. The natural frequency of the driving support of the heat exchanger was numerically calculated. Both of the measured and the natural frequency were approximately equal to the blade passing frequency. Because it was difficult to modify the structure of the driving support during the normal operation of the plant, the blade number of the fan was increased, which greatly reduced the vibration level of the heat exchanger.

  • PDF

Methods of A-weighted Sound Pressure Level Measurement for Fans and Blowers (KS B 6361, Focus on Revised Content made in 2000) (송풍기의 소음레벨 측정방법 (KS B6361, 2000년 개정내용을 중심으로))

  • Kim, Kyoung-Ho;Lee, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.424-432
    • /
    • 2000
  • The revision was provided for the method of A-weighted sound pressure measurement for fans and blowers, in which the newly developed measurement techniques were applied to KS B 6361. This revision includes the sound power methods for radiated sound from the body, the in-duct measurement method, and the correction method for flow noise upon measuring microphone, etc.

  • PDF