• Title/Summary/Keyword: 손상 추정

Search Result 617, Processing Time 0.028 seconds

Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure (트라이포드 하부구조물의 기저모델개선 및 결함추정 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.218-226
    • /
    • 2020
  • An experimental study was conducted on baseline model updating and damage estimation techniques for the health monitoring of offshore wind turbine tripod substructures. First, a procedure for substructure health monitoring was proposed. An initial baseline model for a scaled model of a tripod substructure was established. A baseline model was updated based on the natural frequencies and the mode shapes measured in the healthy state. A training pattern was then generated using the updated baseline model, and the damage was estimated by inputting the modal parameters measured in the damaged state into the trained neural network. The baseline model could be updated reasonably using the effective fixity model. The damage tests were performed, and the damage locations could be estimated reasonably. In addition, the estimated damage severity also increased as the actual damage severity increased. On the other hand, when the damage severity was relatively small, the corresponding damage location was detected, but it was more difficult to identify than the other cases. Further studies on small damage estimation and stiffness reduction quantification will be needed before the presented method can be used effectively for the health monitoring of tripod substructures.

Prognostic Technique for Ball Bearing Damage (볼 베어링 손상 예측진단 방법)

  • Lee, Do Hwan;Kim, Yang Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1315-1321
    • /
    • 2013
  • This study presents a prognostic technique for the damage state of a ball bearing. A stochastic bearing fatigue defect-propagation model is applied to estimate the damage progression rate. The damage state and the time to failure are computed by using RMS data from noisy acceleration signals. The parameters of the stochastic defect-propagation model are identified by conducting a series of run-to-failure tests for ball bearings. A regularized particle filter is applied to predict the damage progression rate and update the degradation state based on the acceleration RMS data. The future damage state is predicted based on the most recently measured data and the previously predicted damage state. The developed method was validated by comparing the prognostic results and the test data.

Multi-Damage Detection in RC Bridges Using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 다중 손상된 RC교량의 손상평가)

  • Tak, Moon-Ho;Noh, Myung-Hyun;Park, Tae-Hyo;Jang, Han-Teak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.296-299
    • /
    • 2009
  • 본 논문은 차분진화 알고리즘을 이용한 다중 손상된 RC 슬라브 교량에 대한 시스템 인식(System Identification)기법을 소개한다. 제안된 기법을 이용하여 이동하중에 의한 교량의 동적응답을 기반으로 손상유무, 위치, 크기가 추정된다. ABAQUS를 이용한 손상된 3차원 슬라브 모델을 실험대상으로 하여, 모델로부터 동적응답을 찾아내었다. 차분진화 알고리즘(Differential Evolutioinary algorithm)을 기반으로 동적응답과 Bi-variate Gaussian 함수로 강성저하된 2차원 유한요소 MZC모델을 이용하여 손상된 위치와 크기, 이동하중의 크기와 속도가 추정되었다. 차분진화 알고리즘을 이용한 RC교량의 손상위치와 이동하중에 대한 추정은 3%이내의 오차를 보였고, 이로부터 제안된 방법의 효율성과 정확성이 검증되었다.

  • PDF

Damage Detection in a Beam Structure Using Modal Strain Energy (빔 구조물의 모달 변형에너지를 이용한 손상탐지)

  • 박수용;최상현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.333-342
    • /
    • 2003
  • The objective of this paper is to present an algorithm to locate and size damage in a beam structure. The method uses the changes in the modal strain energy distribution. A damage index, utilized to identify possible location and corresponding severity of local damage, is formulated and expressed in terms of modal displacements that can be obtained from mode shapes of the undamaged and the damaged structures. The possible damage locations in the structure arc determined by the application of damage indicator according to previously developed decision rules. The robustness and effectiveness of the method arc demonstrated using numerical examples of beam structures with simulated damage.

Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine (재킷식 해상풍력터빈 지지구조물의 손상추정기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.64-71
    • /
    • 2017
  • A damage estimation method is presented for jacket-type support structure of offshore wind turbine using a change of modal properties due to damage and committee of neural networks for effective structural health monitoring. For more practical monitoring, it is necessary to monitor the critical and prospective damaged members with a limited number of measurement locations. That is, many data channels and sensors are needed to identify all the members appropriately because the jacket-type support structure has many members. This is inappropriate considering economical and practical health monitoring. Therefore, intensive damage estimation for the critical members using a limited number of the measurement locations is carried out in this study. An analytical model for a jacket-type support structure which can be applied for a 5 MW offshore wind turbine is established, and a training pattern is generated using the numerical simulations. Twenty damage cases are estimated using the proposed method. The identified damage locations and severities agree reasonably well with the exact values and the accuracy of the estimation can be improved by applying the committee of neural networks. A verification experiment is carried out, and the damage arising in 3 damage cases is reasonably identified.

Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique Part II. Damage Size Estimation Algorithm (복합재 패널에서 유도 탄성파를 이용한 이미지 기반 손상탐지 기법 개발 Part II. 손상크기 추정 알고리즘)

  • Kim, Changsik;Jeon, Yongun;Park, Jungsun;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, a new algorithm is proposed to estimate the damage size by combining the reflected area with the reflected position and extracting contours in proportion to the maximum value of pixels from the visible image. The cumulative summation feature vector algorithm is used to obtain the area of the reflected signal. To get the position of the reflected signal, the signal correlation algorithm is used to decompose the reflected signal from the damage. The proposed algorithm is tested and validated for composite panels. Repetitive experiments are performed and it is confirm that the proposed algorithm is reproducible. Further, it is verified that the damage size can be estimated appropriately by the proposed algorithm.

Damage Estimation of Bridge Structures Using System Identification (동특성추정법을 이용한 교량구조물의 손상도 추정)

  • 김원종;강용중
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.71-78
    • /
    • 1993
  • A method to estimate damage of bridge structures is developed using system identification approach. Dynamic behavior of damaged structures is represented by a non-linear hysteretic moment model. Structural properties can be evaluated through system identification. To incorporate variability of the structural properties and uncertainties of structural response, damage is represented as random quantities. Numerical example is shown for the bridge structure under different ground excitation.

  • PDF

Structural Damage Detection Method Using Sensitivity Matrices (민감도행렬을 사용한 구조물의 손상추정법)

  • 윤정방;김두기
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-126
    • /
    • 1996
  • Damage detection methods using structural tests can be divided into two methods, i.e., static and dynamic. The static methods which use the stiffness properties of the structure are simpler than the dynamic methods. However, static approaches are very sensitive to the displacement measurement noises and modeling errors. The dynamic methods also have limitations in acquiring the natural frequencies and mode shapes of the high frequencies. In this study, a method for the structural damage assessment using sensitivity matrices is developed, in which the drawbacks of the static and dynamic methods can be compensated. Based on the measurement data for the static displacements and dynamic modal properties, the damage locations and the degree of damage are determined using the presented sensitivity matrix method. The efficiency of the proposed method has been examined through numerical simulation studies on truss type structures.

  • PDF

Damage Assessment Technique for Bridge Structures By Moving Load Tests and Optical Displacement Measurements (광변위 계측과 주행하중시험기법에 의한 교량구조의 손상도 추정기법)

  • Lee, Hyeong-Jin;Kim, Jong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.769-777
    • /
    • 2015
  • In this paper, a damage assessment technique using a moving load test and optical sensors was studied to overcome the deficiency of measurement information in bridge maintenance. Continuous displacements by applying the reciprocal theorem to the test can make the assessment simpler and more practical. Numerical and experimental studies were performed to show the efficiency and accuracy of the proposed technique as well as the possibility of a more realistic assessment for large infrastructure. The results showed that the assessed damage levels are quite accurate, and similar to the exact values in actual damage locations, even in the experiments. The proposed technique is useful and practical for both detecting damage locations and damage quantities.

Damage Localization of Bridges with Variational Autoencoder (Variational Autoencoder를 이용한 교량 손상 위치 추정방법)

  • Lee, Kanghyeok;Chung, Minwoong;Jeon, Chanwoong;Shin, Do Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.233-238
    • /
    • 2020
  • Most deep learning (DL) approaches for bridge damage localization based on a structural health monitoring system commonly use supervised learning-based DL models. The supervised learning-based DL model requires the response data obtained from sensors on the bridge and also the label which indicates the damaged state of the bridge. However, it is impractical to accurately obtain the label data in fields, thus, the supervised learning-based DL model has a limitation in that it is not easily applicable in practice. On the other hand, an unsupervised learning-based DL model has the merit of being able to train without label data. Considering this advantage, this study aims to propose and theoretically validate a damage localization approach for bridges using a variational autoencoder, a representative unsupervised learning-based DL network: as a result, this study indicated the feasibility of VAE for damage localization.