DOI QR코드

DOI QR Code

Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique Part II. Damage Size Estimation Algorithm

복합재 패널에서 유도 탄성파를 이용한 이미지 기반 손상탐지 기법 개발 Part II. 손상크기 추정 알고리즘

  • Received : 2020.09.24
  • Accepted : 2020.12.18
  • Published : 2021.01.01

Abstract

In this paper, a new algorithm is proposed to estimate the damage size by combining the reflected area with the reflected position and extracting contours in proportion to the maximum value of pixels from the visible image. The cumulative summation feature vector algorithm is used to obtain the area of the reflected signal. To get the position of the reflected signal, the signal correlation algorithm is used to decompose the reflected signal from the damage. The proposed algorithm is tested and validated for composite panels. Repetitive experiments are performed and it is confirm that the proposed algorithm is reproducible. Further, it is verified that the damage size can be estimated appropriately by the proposed algorithm.

본 논문에서는 반사된 면적 결과와 반사된 위치 결과를 중첩하고, 가시화된 이미지에서 픽셀의 최대값에 대한 비율로 윤곽선을 추출하여 손상 크기를 추정하는 알고리즘을 제안하였다. 반사된 신호의 면적을 구하기 위해서 누적함수 특성벡터 알고리즘을 사용하였고, 반사된 신호의 위치를 구하기 위해서 신호 상관관계를 이용해서 측정신호로부터 손상 신호를 분리하였다. 그리고 제안한 손상크기 추정 알고리즘을 복합재 평판에서 실험 수행하여 검증하였다. 임의의 위치에서 반복 실험을 수행해서 제안된 알고리즘이 반복에 따른 재현성이 있음을 검증하였고, 손상크기 변화에 따라 손상 크기를 추정하고 분별할 수 있음을 검증하였다.

Keywords

References

  1. Diamanti, K. and Soutis, C., "Structural health monitoring techniques for aircraft composite structures," Progress in Aerospace Sciences, Vol. 46, May 2010, pp. 342-352. https://doi.org/10.1016/j.paerosci.2010.05.001
  2. Guemes, A., Fernadez-Lopez, A., Pozo, A. R. and Sierra-Perez, J., "Structural Health Monitoring for Advanced Composite Structures : A Review," Journal of Composites Science, Vol. 4, No. 13, 2020.
  3. Cawley, P., "Structural health monitoring : Closing the gap between research and industrial deployment," Structural Health Monitoring, Vol. 17, No. 5, 2018, pp. 1225-1244. https://doi.org/10.1177/1475921717750047
  4. Abbas, S., Li, F. and Qiu, J., "A Review on SHM Techniques and Current Challenges for Characteristic Investigation of Damage in Composite Material Components of Aviation Industry," Materials Performance and Characterization, Vol. 7, No. 1, 2018, pp. 224-258.
  5. Moix-Bonet, M., Wierach, P., Loendersloot, R. and Bach, M., "Damage Assessment in Composite Structures Based on Acousto Ultrasonics-Evaluation of Performance," Proceeding of the Final Project Conference, Smart Intelligent Aircraft Structures (SARISTU), May 2015, pp. 617-529.
  6. Bockenheimer, C. and Speckmann, H., "Validation, Verification and Implementation of SHM at Airbus," 6th International Workshop on Structural Health Monitoring, Stanford, California, USA, 2013.
  7. Rebillat, M. and Mechbal, N., "Damage localization in geometrically complex aeronautic structures using canonical polyadic decomposition of Lamb wave difference signal tensors," Structural Health Monitoring, Vol. 19, No. 1, 2019. https://doi.org/10.1177/1475921719840354
  8. Ng., C. T. and Veidt, M., "A Lamb-wavebased technique for damage detection in composite laminates," Smart Materials and Structures, Vol. 18, 2009, p. 074006. https://doi.org/10.1088/0964-1726/18/7/074006
  9. Qiu, L., Liu, M., Qing, X. and Yuan, S., "A quantitative multidamage monitoring method for large-scale complex composite," Structure Health Monitoring, Vol. 12, No. 3, 2013, pp. 183-196. https://doi.org/10.1177/1475921713479643
  10. Gorgin, R., Wu, Z., Gao, D. and Wang, Y., "Damage size characterization algorithm for active structural health monitoring using the A0 mode of Lamb waves," Smart Materials and Structures, Vol. 23, 2014, p. 035015. https://doi.org/10.1088/0964-1726/23/3/035015
  11. Migot, A., Bhuiyan, Y. and Giurgiutiu, V., "Numerical and experimental investigation of damage severity estimation using Lamb wave-based imaging methods," Journal of Intelligent Material Systems and Structures, Vol. 30, No. 4, 2019, pp. 618-635. https://doi.org/10.1177/1045389x18818775
  12. Mei, H., Haider, M. F., Joseph, R., Migot, A. and Giurgiutiu, V., "Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications," sensors, Vol. 19, No. 383, 2019.
  13. Hameed, M. S., Li, Z., Chen, J. and Qi, J., "Lamb Wave Based Multistage Damage Detection Method Using an Active PZT Sensor Network for Large Structures," Sensors, Vol. 19, No. 2010, 2019.
  14. Eremin, A., Glushkov, E., Glushkova, N. and Lammering, R., "Guided wave time-reversal imaging of macroscopic localized inhomogeneities in anisotropic composites," Structural Health Monitoring, Vol. 18, No. 5, 2019, pp. 1803-1819. https://doi.org/10.1177/1475921719830612
  15. Ihn, J. B. and Chang, F. K., "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: Part I. Diagnostics," Smart Materials and Structures, Vol. 13, 2004, pp. 609-620. https://doi.org/10.1088/0964-1726/13/3/020
  16. Kim, C., Jeon, Y., Park, J. and Cho, J. Y., "Image Based Damage Detection Method for Composite Panel with Guided Elastic Wave Technique, Part I. Damage Localization Algorithm," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 1, 2021, pp. 1-12. https://doi.org/10.5139/JKSAS.2021.49.1.1