• Title/Summary/Keyword: 손상선박

Search Result 224, Processing Time 0.035 seconds

Calculation of Fatigue Life of Bow Frame of ARAON Considering Navigating in Ice and Open Waters (빙 및 일반해역 운항을 고려한 아라온호 선수프레임의 피로수명 계산)

  • An, Woo-Seong;Lee, Tak-Kee;Hwang, Mi-Ran
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.458-465
    • /
    • 2018
  • Ice-going ships such as icebreakers, icebreaking tankers, and icebreaking LNG carriers are subjected to wave loads in open water and ice loads in ice-covered water. In terms of the ship's structural design, the local ice load is important. The fatigue failure due to repeated ice loads is also important. ISO 19906 specifies the assessment of the fatigue limit for a polar offshore structures. In addition, Lloyd's Register refers to fatigue damage based on ShipRight FDA ICE. In ShipRight FDA ICE, the fatigue damage indices due to wave and ice loads are simply presented as 0.5 for each load. It also states that the sum of the two fatigue damage indices should not exceed one. This study calculated and analyzed the fatigue damage index and fatigue life considering ARAON's voyage schedules and the assumed Antarctic voyage based on data measured during the Arctic voyage of ARAON in 2010.

Investigation of Optimum Cathodic Protection Potential to Prevent Erosion with a Flow Rate of AA5083-H321 for Marine Vessels (선박용 AA5083-H321의 유속에 의한 침식손상 방지를 위한 최적 음극방식전위 규명)

  • Chong, Sang-Ok;Park, Il-Cho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.288-295
    • /
    • 2020
  • This study investigated the erosion-corrosion characteristics of 5038-H321 aluminum alloy in a natural seawater solution through various electrochemical experiments and flow rate parameters. Cathodic polarization experiments were conducted at flow rates ranging from 4 to 12 knots. Considering the concentration polarization section representing a relatively low current density, the range of the potentiostatic experiment was determined to be -1.6 to -1.0 V. The potentiostatic experiment was conducted at various potentials for 180 minutes in seawater. After the experiment, the corrosion characteristics were evaluated by observing surface morphology and measuring surface roughness. As a result, as the applied potential was lower, the amount of calcareous deposits increased and the roughness tended to increase. On the other hand, it was confirmed that the roughness was larger in the static condition than the flow rate condition due to the influence of the flow velocity. Variations in the chemical composition with flow rate variations were analyzed by energy-dispersive spectroscopy (EDS). In conclusion, the cathodic potential of AA5083-H321 in seawater was determined to be -1.0 V.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Experimental Study on Combined Failure Damage of Bi-directional Prestressed Concrete Panel under Impact-Fire Loading (충돌 후 화재에 대한 이방향 프리스트레스트 콘크리트 패널부재의 복합 파괴손상에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2014
  • Since the World Trade Center and Pentagon attacks in 2001, terror, military attack, or man-made disaster caused impact, explosion, and fire accident have frequently occured on civil infrastructures. However, structural behavior researches on major Prestressed Concrete (PSC) infrastructures such as bridges, tunnels, Prestressed Concrete Containment Vessel (PCCVs), and LNG tanks under extreme loading are significantly lacking. Especially, researches on possible secondary fire scenarios after terror, bombing, collision of vehicles and vessels on concrete structures have not been performed domestically where most of the past researches related to extreme loadings on structures focused on an independent isolated extreme loading scenario. Due to the outcry of public concerns and anxiety of potential terrorist attacks on major infrastructures and structures, a study is urgently needed at this time. Therefore, in this study, the bi-directional prestressed concrete $1400{\times}1000{\times}300mm$ panels applied with 430 kN prestressing force using unbonded prestressing thread bars were experimentally evaluated under impact, fire, and impact-fire combined loadings. Due to test site restrictions, impact tests were performed with 14 kN impactor with drop heights of 10m and 3.5 m to evaluate impact resistance capacity. Also, fire and impact-fire combined loading were tested using RABT fire loading curve. The measured residual strength capacities of PSC and RC specimens applied with impact, fire, impact-fire combined loadings were compared with the residual strength capacity of undamaged PSC and RC specimens for evaluation. The study results can be used as basic research data for related research areas such as protective design and numerical simulation under extreme loading scenarios.

A Leg Analysis on the Discharge of Cargo Residue at Sea (화물잔류물의 해양 투입처분(배출) 사안에 대한 법률적 분석)

  • Hong, Gi-Hoon;Park, Chan-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.193-202
    • /
    • 2006
  • The Consultative Meeting of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and other matter, 1972 (London Convention 1972) has requested to International Maritime Organization (IMO) Marine Environmental Protection Committee to collaborate and help clarify a boundary issue between International Convention for the Prevention of Pollution from Shops, 1973 as modified by the Protocol of 1978 (MARPOL) and the London Convention concerning 'dumping' versus 'discharges' during normal operations of ships in 2004, and subsequently established a Joint London Convention/MEPC Correspondence Group. The Contracting Parties to London Convention expressed their environmental concerns on the broad interpretation of the "cargo-associated wastes" by the States, which could be discharged by ships under MARPOL. Regulatory regimes for the cargo residues appear to vary among states. Some countries require fur ships to discharge their cargo wastes into the port reception facility and IMO also recommends doing so. This paper examines the related current national and international legal texts for the regulation of disposal of wastes from ships in order to analyze the current global concern on the marine pollution associated with waste discharge during operations of ships. In particular, we attempt to evaluate the likely marine environmental consequences arising from the disposal of cargo residue using an hypothetical case for the coal cargo residue among bulk cargos in this paper, since location, magnitude and frequency of the discharge of coal cargo residues into the sea adjacent to Korean Peninsula are not readily available. The cargo residues may be discharged to the sea according to MARPOL 73/78; however, its marine environmental consequences can be significant depending upon the characteristics and amounts of wastes to be discharged. Also the public tolerance of the environmental consequences would be widely different among nations. Multilateral environmental agreements, in general, more strictly apply their rules if there are other options to disposal at sea, i.e. port reception facility in this case. Therefore, port reception facilities for the wastes generated by ships are recommended to be further constructed in major national ports in order to reduce the risk of environmental damages during the operations of ships.

  • PDF

Full-Scale Measurement of Pure Car Carrier (자동차 운반선에 대한 실선 계측)

  • Jin-S.,Park;Oi-H.,Kim;Zae-K.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.46-62
    • /
    • 1989
  • This paper presents the results of full-scale structural measurements of 4,800 unit pure car carriers "HYUNDAI NO.103" and "HYUNDAI NO.105" on one voyage respectively for each ship, especially in order to investigate the local strength of partial bulkhead above free-board deck. With the measured data, the short-term frequency analyses have been performed. The results show that the wave-induced stresses follow, on the whole, well the Rayleigh distribution. In addition, it has been found from the measured data that transverse local stresses at bulkhead section have a very close relation with the acceleration in athwartship direction. Finally, the long-term analysis has been attempted by using the following two statistical distributions mainly in order to estimate the maximum stress amplitude at the corners of partial bulkhead. 1) Exponential distribution of cycles of stress amplitude 2) Double exponential distribution of extreme values of stress amplitude for each short-term analysis The results of these two cases show a good agreement with each other. For example, the estimated maximum stress amplitude for 10 years at port-side corner of Fr. 132 partial bulkhead is $2125kg/cm^2$ for the first case and $2170kg/cm^2$ for the second case just based on the measured data.

  • PDF

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region (해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구)

  • Lee, Kangsu;Hong, Keyyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.

A Study on the Repair of Fatigue Damage at Large Cast Iron structure using Cold Joint Method (냉간체결방법을 이용한 대형 주철 구조물의 피로손상수리방법에 대한 연구)

  • Lee, Sung-Riong;Lee, Dong Jun;Cho, Seok Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.140-148
    • /
    • 2019
  • Large cast iron structures are used in casings and pipes in shipsand chemical plants. Broken parts in the casings and pipescan result in failures even when stresses are below the yield strength of the part's materials. Fatigue failure of a large cast iron structure is inevitable due to the design constraints and low reliability of the material strength. A small structure can be repaired by welding, but a large structure cannot because it cannot be preheated slowly and uniformly. This study shows that a large structure can be repaired by a cold joint method using a crack repair screw. Large cast iron structures were manufactured by GC 300, and their design stress is below 3.5 MPa. The tensile strength on notched specimens repaired by crack repair screws was 8.2 MPa. Therefore, the safety factors of structures repaired by crack repair screws have a value above 2.3 and are considered to be high values.

A Study on Safety and Performance of Rope Cutter for Ship's Propeller (선박추진기 로프절단장치의 안전성 및 효용성에 관한 연구)

  • Lee, Won-Ju;Kim, Jong-Ho;Jang, Se-Hyun;Lee, Kyoung-Woo;Kim, Bo-Young;Lee, Woo-Kun;Rho, Beom-Seok;Kim, Jun-Soo;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.475-481
    • /
    • 2018
  • In this study, the safety and effectiveness of ope cutter, developed to prevent frequent accident propeller windingness at sea. First, we calculated the bolt strength of the three types of rope cutting devices used in the experiment and the torsional stresses on the shafting system theoretical equation and the finite element method. As a result, the bolts used in the rope cutter confirmed from the viewpoint of safety life design and fail safe design. Also, safety satisfactory because of the small effect on the shaft system when locking up. Experiments were carried out to cut ropes and fishing nets from the sea using the ships equipped with three types of rope cutters verified to be safe. As a result, ropes of 20 to 50 mm in thickness were generally cut. It was found that the cutting efficiency of a rope cutter attached to shafting decreased when cutting thick ropes.

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.