DOI QR코드

DOI QR Code

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region

해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구

  • Lee, Kangsu (Offshore Plant Engineering Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Hong, Keyyong (Offshore Plant Engineering Division, Korea Research Institute of Ships and Ocean Engineering)
  • Received : 2014.10.07
  • Accepted : 2015.05.21
  • Published : 2015.05.31

Abstract

This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.

본 연구의 목적은 선박의 충돌에 의해 발생하는 원형단면을 갖는 실린더형 해양구조물의 충격손상을 최소화 시키기 위한 것이다. 기존의 설계기준, 코드 및 선급규정 등에 명시된 충격해석은 해수유체영역이 고려되지 않은 상태로 계산을 수행해 왔다. 본 연구에서는 해수유체영역을 고려한 모델링방법과 동적응답, 변형률, 내부에너지 등의 응답파라미터를 고찰하여 기존에 고려하지 않은 결과와 비교분석하였다. 충돌선박의 선속을 변화시켜 다양한 상태의 하중케이스를 고려하였고 가장 큰 충격하중상태인 2.0m/s에서의 선속에서의 응답결과를 비교분석하였다. ALE방법을 이용하여 해수유체영역을 고려한 경우 해수영역에서의 충격에너지 흡수와 유체감쇠를 통해 응답크기가 더 작고 구조물의 응력과 소성영역의 분포가 고르게 나타났다. 해수유체영역을 고려하지 않은 경우 보다 보수적인 설계가 될 수 있음을 알 수 있었다.

Keywords

References

  1. K. S. Lee and R. S. Park, "Effective arrangement of rubber fenders of wind-measuring met mast due to barge," International Journal of Offshore and Polar Engineering, vol. 22, no. 1, pp. 69-75, 2012.
  2. K. S. Lee, "Effects on the various rubber fenders of a tripod offshore wind turbine substructure collision strength due to boat." Journal of Ocean Engineering, vol. 72, no. 1, pp. 188-194, 2013. https://doi.org/10.1016/j.oceaneng.2013.06.014
  3. O. Kitamura, "FEM approach to the simulation of collision and grounding damage," Marine Structures, vol. 15, pp. 403-438, 2005.
  4. G. Woisin, "Instantaneous loss of energy with unsymmetrical ship collisions," Schiff und Hafen, vol. 40, no 1, pp. 50-55, 1988.
  5. W. L. Jin, J. Song, S. F. Gong, and Y. Lu, "Evaluation of damage to offshore platform structures due to collision of large barge," Engineering structures, vol. 27, pp. 1317-1326, 2005. https://doi.org/10.1016/j.engstruct.2005.02.010
  6. K. S. Lee, "Method for determining thickness of rubber fenders of a tripod type offshore wind turbine substructure," Journal of the Korean Society of Marine Engineering vol. 36, no. 4, pp. 490-496, 2012. https://doi.org/10.5916/jkosme.2012.36.4.490
  7. F. Biehl, "Collision safety analysis of offshore wind turbines," LS-DYNA Anwender forum, pp. B-III-27-34, 2005.
  8. DNV, "Design against accidental loads," Recommended Practice RP-C204, 2010.
  9. DNV, "Fatigue design of offshore steel structures," Recommended Practice RP-C203, 2000.
  10. NORSOK, "Design of steel structures, NORSOK strandard N-004," 1998 Revision, 1998.
  11. AASHTO, "Bridge design specifications," 1994.
  12. American Petroleum Institute, "Recommended practice 2A-WSD (RP 2A-WSD)," 21st ed, 2000.