• Title/Summary/Keyword: 손상보수

Search Result 357, Processing Time 0.027 seconds

Electromechanical Properties of Smart Repair Materials based on Rapid Setting Cement Including Fine Steel Slag Aggregates (제강 슬래그 잔골재가 혼입된 초속경 시멘트 기반 스마트 보수재료의 전기역학적 특성)

  • Tae-Uk Kim;Min-Kyoung Kim;Dong-Joo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • This study investigated the electromechanical properties of cement based smart repair materials (SRMs) according to the different amounts of fine steel slag aggregates (FSSAs). SRMs can self-diagnose the quality of repairing and self-sense the damage of repaired zone. The replacement ratios of FSSAs to sand for SRMs were 0% (FSSA00), 25% (FSSA25), and 50% (FSSA50) by sand weight. The electrical resistivity of SRMs generally decreased as the compressive stress of SRMs increased: the electrical resistivity of FSSA25 at the age of 7 hours decreased from 78.16 to 63.68 kΩ-cm as the compressive stress increased from 0 to 22.37 MPa. As the replacement ratio of FSSAs by weight of sand increased from 0% to 25%, the stress sensitivity coefficient (SSC) of SRM at the age of 7 h increased from 0.471 to 0.828 %/MPa owing to the increased number of partially conductive paths in the SRMs. However, as the replacement ratio of FSSAs further increased up to 50%, the SSC decreased from 0.828 to 0.649 %/MPa because some of the partially conductive paths changed to continued conductive ones. SRMs are expected to self-sense the quality and future damage of repaired zone only by measuring the electrical resistivity of the repaired zone in addition to fast recovery in the mechanical resistance of structures.

Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway (고속철도 콘크리트궤도 체결구 최적 수직강성)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • In this study, to minimize both the costs associated with track maintenance and the energy consumption for train operation, a numerical method that evaluates the optimal vertical stiffness of a fastener for concrete track is presented. A progress model of the track damage is established in order to calculate the concrete track maintenance cost according to the fastener stiffness. Also, the quantitative relationship between the progress of the track damage and the maintenance of the concrete track is derived. The wheel load is more exactly evaluated by using the advanced vehicle-track interaction model, which can precisely consider the behaviors of the track components. An optimal range for the stiffness of the fastener, a range that is applicable to the design of concrete track for domestic high speed lines, is proposed.

The Development of Visual Inspection System for National Road Facility Maintenance Management (국도 시설물 유지관리를 위한 현장점검시스템 개발)

  • 주기범;김태학;박상근
    • Proceedings of the CALSEC Conference
    • /
    • 2003.09a
    • /
    • pp.72-77
    • /
    • 2003
  • Visual inspection works are very important part of facility maintenance and management life cycle as a step of creating base data for decision making and maintenance and repair. But currently, visual inspection works have been performed unefficiently and unreliably as works on hand, duplication of works, decisions of defect state, unutilization of inspection history, lack of professional and so on. In this research, we developed visual inspection system that processes inspection work efficiently and provides reliability of inspection output, as a target of bridges, tunnels, underground roadway on national road. We defined problems through visual inspection work analysis, examined the solutions and reflected to functional design of system. We will plan to utilize this system in HMCS(Highway Maintenance and Construction Service).

  • PDF

Damage of Overlaid Concrete Structures Subjected In Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 손상에 관한 연구)

  • 윤우현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.491-498
    • /
    • 2001
  • The failure phenomenon of overlaid concrete structures, such as surface crack and peel-off failure in the contact zone, was investigated due to temperature shock(rainfall). To investigate this failure phenomenon, the surface tensile stress, and the shear stress, the vertical tensile stress in the contact zone were analysed using the non-linear stress-strain relationship of material such as strain-hardening- and strain-softening diagrams. Rainfall intensity, overlay thickness and overlay material were the main variables in the analyses. It is assumed that the initial temperature of overlaid concrete structures was heated up to 55$\^{C}$ by the solar heat. With a rain temperature 10$\^{C}$ and the rainfall intensity of nR=1/a, tR=10min, 60min, the stress states of overlaid concrete structures were calculated. The result shows that only fictitious cracks occurred in the overlay surface and no shear bond failure occurred in the contact zone. The vortical tensile stress increasing with overlay thickness was proved to be the cause of peel-off failure in the contact zone. The formulae for relationship between the vertical tensile stress and overlay thickness, material properties were derived. Using this formulae, it is possible to select proper material and overlay thickness to prevent failure in the contact zone due to temperature shock caused by rainfall.

Flexural Behavior of Reinforced Concrete Beams Retrofitted with Modified Polymer Mortar System (폴리머 모르타르로 단면을 복구한 철근콘크리트 보의 휨 거동)

  • Hong Geon-Ho;Choi Eun-Gyu;Lee Su-Jin;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.94-101
    • /
    • 2004
  • This study shows the test results of seven RC beams retrofitted with modified polymer system and parametric study about the effects of tensile strength of retrofitting materials by analytical method on the flexural behavior. The main parameters are the retrofitted depth and length. The beams are loaded to the failure by four-point loading. Test results show that the effect of the retrofitted length on the structural behavior is more significant than that of depth. As the retrofitted depth is increased, the beams represents the brittle failure mode The non-linear analysis is carried out to grasp the effect of the tensile strength of retrofitting material on the structural behavior. As the retrofitted depth and length are increased, the tensile strength becomes more effective so these parameters should be considered to determine the retrofitted area. The analytical results show that failure strength is less than that of experimental results, but the stiffness is vice versa.

Real-time Health Monitoring of Pipeline Structures (배관 구조물의 상시 건전성 모니터링)

  • Kim, Ju-Won;Kim, Tae-Heon;Lee, Chang-Gil;Park, Seung-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.666-669
    • /
    • 2010
  • 여러 가지 지하시설물 중 국가 주요 자원의 수송망을 책임지는 주요구조물인 수도관, 가스관등의 배관구조물은 접근이 쉽지 않은 지하공간에 복잡하게 연결되어 있어 그 중요성에 비해 유지, 관리, 보수가 쉽지 않았다. 이러한 배관구조물을 균열, 조인트 풀림 등의 손상으로부터 보다 안전하고 효율적으로 관리하기 위하여 상시적 배관구조물 손상진단기법을 연구하였다. 이를 위해 배관 구조물 시험체에 볼트풀림, notch 등과 같은 손상에 대하여 대표적인 압전센서인 PZT와 MFC를 부착하고 임피던스기법 및 유도 초음파기법을 적용하여 볼트풀림개수, notch 손상개수 증가에 따른 출력신호를 반복 계측하였다. 객관적인 평가를 위해 계측된 신호를 신호처리기법인 웨이블렛 변환을 수행하고, RMSD 및 1-CC의 손상지수를 사용하여 구조물손상을 정량화 시켰으며 이를 토대로 구조물의 건전성의 기준이 되는 임계값을 설정함으로서 임피던스와 유도초음파 두 검색기법을 이용한 상시적 배관구조물 건전성 모니터링의 가능성을 살펴보았다.

  • PDF