• Title/Summary/Keyword: 속도 이방성

Search Result 199, Processing Time 0.028 seconds

A Study on Mechanical Properties of Strand/Particle Composites (II) - Measuring of Young's Moduli and Estimating of Anisotropy Using an Ultrasonic Method - (스트랜드/파티클 복합체의 기계적 성질에 관한 연구(II) - 탄성률 측정 및 초음파법에 의한 이방성의 예측 -)

  • Kim, Yu-Jung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • Composites with various layer constructions involving the ratio of S/P were produced from wood strands(S) and particles(P) (Cryptomeria japonica D.Don) to measure various Young's moduli and anisotropy by ultrasonics. As a result, static Young's moduli of composites were almost same as dynamic Young's moduli obtained from natural frequency. However, these were smaller than those evaluated from ultrasonic wave propagation velocity. The differences between propagation velocity of the parallel(${\parallel}$) and perpendicular(${\bot}$) in-plane direction resulted in a tendency of anisotropy. The tendency of anisotropy was larger in three-layer constructions than in seven-layer constructions. The differences of strand surface layers showed larger values than those of particle surface layers. Also, composites with higher weight ratio of strand had a tendency to propagate rapidly in each direction. In contrast to these results, the propagation velocity in the thickness direction had a tendency to propagate rapidly in composites with particle surface layers and the lower weight ratio of strand.

  • PDF

Three-dimensional S-wave Velocity Structure and Radial Anisotropy of Crust and Uppermost Mantle Beneath East Asia (동아시아 지각과 최상부맨틀의 3차원 S파 속도구조 및 이방성 연구)

  • Lim, DoYoon;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • We investigate the crustal and uppermost mantle SV- and SH-wave velocity structure and radial anisotropy beneath East Asia including Korea, China and Japan. Rayleigh waves and Love waves were extracted from the seismic data recorded at broadband seismic stations in East Asia. Using the MFT (Multiple Filter Technique), we obtained group velocity dispersion curves of Rayleigh and Love waves with a period range of 3 to 200 s. We obtained 62466 Rayleigh-waves dispersion-curve measurements in vertical components and 54141 Love-waves dispersion-curve measurements in transverse components, respectively. The inverted models using these data sets provide SV- and SH-wave velocity structure of crust and uppermost mantle down to 100 km depth. In both cases of the S-wave velocity structures, strong high-velocity anomalies are observed down to 30 km depth beneath the East Sea, and deeper than 30 km depth, strong low-velocity anomalies are found beneath the Tibetan plateau. In the case of the SH-wave velocity structure, strong low-velocity anomalies are observed beneath the East Sea deeper than 30 km depth, leading to negative anisotropy. On the other hand, positive anisotropy is usually observed beneath the Tibetan plateau.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography (표면파 토모그래피를 이용한 사우디아라비아의 S파 속도구조 및 이방성 연구)

  • Kim, Rinhui;Chang, Sung-Joon;Mai, Martin;Zahran, Hani
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

The Determination of Group Velocity of Lamb Wave So Mode in Composite Plates with Anisotropy (이방성 복합재료 판에서 램파 $S_0$ 모드의 군속도 결정)

  • Rhee, Sang-Ho;Lee, Jeong-Ki;Lee, Jung-Ju
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.239-245
    • /
    • 2006
  • Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not accorded with the theoretical group velocities as calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude in addition to direction. In this study, $S_0$ mode phase velocity dispersion corves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity are calculated from the slowness surface. The theoretically determined group velocity, which is calculated from the slowness surface, Is compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

Simulation of Elastic Wave Propagation in Anisotropic Materials (이방성 재료에서의 탄성파 전파 과정에 대한 시뮬레이션)

  • Kim, Young-H.;Lee, Seung-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.227-236
    • /
    • 1997
  • Quantitative analysis and imaging of elastic wave propagation are very important for the materials evaluation as well as flaw detection. The elastic wave propagation in an anisotropic media is more complex, and analysis and imaging become essential for flaw detection and materials evaluation. In the anisotropic media, the wave velocity is dependent on the propagation direction. In addition, the direction of group velocity is different from that of phase velocity, the direction of energy flow is not same as the propagation direction of wavefront (beam skewing effect). Especially, this effect becomes critical for the large anisotropic media such as fiber composite materials, and the results using elastic waves for those materials have to be analyzed considering the wave propagation mechanism. Since the analytical approach for the wave propagation in the anisotropic materials is limited, the numerical analysis such as finite difference method (FDM) have been used for these case. Therefore, 2-dimensional FDM program for the elastic wave propagation is developed, and wave propagation in anisotropic media are simulated.

  • PDF

A Study of the Laboratory Scale Measurement Technique of P-Wave Velocity for the Assessment of the An isotropy of Engineering Property of Rock (암석의 공학적 이방성 측정을 위한 실험실내 P파 속도 측정기법에 대한 연구)

  • 박형동
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.237-274
    • /
    • 1995
  • This study was focused on the improvement of the measurement technique of P-wave velocity for the assesment of the anisotropy of the engineering property of rock. Samples used were collected from a working quarry within the Carnmenellis granite area on which series of engineering geological data have been accumulated. This study mainly concerned the development of measurement technique at the curved surface of rock, the use of natural honey-based coupling agent and the drying method for rock specimen over $P_2O_5$. According to the results, the range of the P-wave velocity anisotropy in two dimensional plane, fell between 0 and 4.68 (%). The direction where maximum velocity occurred was parallel to the orientation of the maximum in-situ stress. The result showed that P - wave velocity is a useful measure to asses the anisotropy of the engineering property of rock and it is suggested that the improvements adopted here can be applied to the experimental work on the rocks in Korea.

  • PDF

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF