• Title/Summary/Keyword: 속도 영상화

Search Result 762, Processing Time 0.035 seconds

Evaluation of Slope Stability and Deterioration Degree for Bangudae Petroglyphs in Ulsan, Korea (울산 반구대암각화의 손상도 및 사면안정성 평가)

  • Lee, Chan-Hee;Chun, Yu-Gun;Jo, Young-Hoon;Suh, Man-Cheol
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2012
  • The major petroglyphs of Bangudae site were composed mainly of hornfelsed shale. Surface of the rock was formed weathering layer (average porosity 25%) that discriminated mineral and chemical composition against fresh rock (average porosity 0.4%). The lost area of major petroglyphs in the past up images carved to the present was calculated about 23.8%. And occurrence area of exfoliation indicated 1.2% of the whole petroglyphs. As a result of the chromaticity analysis, color of the major petroglyphs was changed brighter and yellower than fresh rock by chemical and biological weathering factors. Average ultrasonic velocity of petroglyphs was measured 2,865m/s. This result indicated that ultrasonic velocity decreased especially bottom of petroglyphs than measured result in 2003 year. The results of the evaluation for slope stability, it identified the possibility of toppling, planar and wedge failure in host rock. The 3D image analysis and modeling data of the cavern obtained for structural reinforcement.

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

Low-complexity Adaptive Loop Filters Depending on Transform-block Region (변환블럭의 영역에 따른 저복잡도 적응 루프 필터)

  • Lim, Woong;Nam, Jung-Hak;Sim, Dong-Gyu;Jung, Kwang-Soo;Cho, Dae-Sung;Choi, Byung-Doo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.46-54
    • /
    • 2011
  • In this paper, we propose a low-complexity loop filtering method depending on transform-block regions. Block adaptive loop filter (BALF) was developed to improve about 10% in compression performance for the next generation video coding. The BALF employs the Wiener filter that makes reconstructed frames close to the original ones and transmits filter-related information. However, the BALF requires high computational complexity, while it can achieve high compression performance because the block adaptive loop filter is applied to all the pixels in blocks. The proposed method is a new loop filter that classifies pixels in a block into inner and boundary regions based on the characteristics of the integer transform and derives optimum filters for each region. Then, it applies the selected filters for the inner and/or boundary regions. The decoder complexity can be adjusted by selecting region-dependent filter to be used in the decoder side. We found that the proposed algorithm can reduce 35.5% of computational complexity with 2.56% of compression loss, in case that only boundary filter is used.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

Performance Analysis of Implementation on Image Processing Algorithm for Multi-Access Memory System Including 16 Processing Elements (16개의 처리기를 가진 다중접근기억장치를 위한 영상처리 알고리즘의 구현에 대한 성능평가)

  • Lee, You-Jin;Kim, Jea-Hee;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.8-14
    • /
    • 2012
  • Improving the speed of image processing is in great demand according to spread of high quality visual media or massive image applications such as 3D TV or movies, AR(Augmented reality). SIMD computer attached to a host computer can accelerate various image processing and massive data operations. MAMS is a multi-access memory system which is, along with multiple processing elements(PEs), adequate for establishing a high performance pipelined SIMD machine. MAMS supports simultaneous access to pq data elements within a horizontal, a vertical, or a block subarray with a constant interval in an arbitrary position in an $M{\times}N$ array of data elements, where the number of memory modules(MMs), m, is a prime number greater than pq. MAMS-PP4 is the first realization of the MAMS architecture, which consists of four PEs in a single chip and five MMs. This paper presents implementation of image processing algorithms and performance analysis for MAMS-PP16 which consists of 16 PEs with 17 MMs in an extension or the prior work, MAMS-PP4. The newly designed MAMS-PP16 has a 64 bit instruction format and application specific instruction set. The author develops a simulator of the MAMS-PP16 system, which implemented algorithms can be executed on. Performance analysis has done with this simulator executing implemented algorithms of processing images. The result of performance analysis verifies consistent response of MAMS-PP16 through the pyramid operation in image processing algorithms comparing with a Pentium-based serial processor. Executing the pyramid operation in MAMS-PP16 results in consistent response of processing time while randomly response time in a serial processor.

Development of Video Watermark System for Low-specification System as Android Platforms (저 사양 안드로이드 기반 동영상 보안을 위한 워터마크 시스템 개발)

  • Hwang, Seon-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.141-149
    • /
    • 2014
  • This paper describes a method to insert and detect watermark or fingerprint to/from videos in low-computing powered system as Android platforms. Fingerprint, which is a kind of watermark, has features such as patterns that contain information. The inserting frame numbers in video-stream and the positions in a picture were chosen from the encrypted user ID to insert the watermarks. The used encrypt algorithm is the HIGHT algorithm which was developed for low-computing powered systems by KISA(Korean Internet & Security Agency). Subtracting an inferred picture from the previous picture was used to extract a candidate feature. Median filtering was used to get rid of noise and stabilize the candidate feature. New algorithm that reduces calculating steps of the median filtering was developed and applied for low-specification systems. The stabilized features were accumulated over 150 times and calculated by correlation coefficient method to recognize the patterns. We examined 22 videos and successfully detected the patterns from 21 videos. The correlation coefficient r values that we examined through this study exceeded over 0.79 more than the threshold (0.7).

Updating GIS Data using Linear Features of Imagery (영상의 선형 정보를 이용한 GIS 자료의 갱신에 대한 연구)

  • 손홍규;최종현;피문희;이진화
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.388-393
    • /
    • 2003
  • 도시화 속도의 증가와 더불어 3차원 자료 획득의 출처가 다양해지연서, 도로 및 건물경계선과 같은 선형 GIS 정보에 대한 신속한 갱신 또한 요구되고 있다. 임의의 출처 자료로부터 대상 자료를 갱신하기 위해서는 가장 먼저 두 자료간의 위치 관계를 결정하여야 하며, 특히 영상정보와 같은 출처 자료와 GIS 자료와 같은 대상 자료간의 위치 관계를 결정하기 위하여 기존에 제시되어온 대부분의 방법들은 두 개 자료간의 관계를 정의 할 수 있는 기준정과 같은 정확한 점 정합 요소(point matching entities)를 요구하고 있다. 따라서 정확한 정합 요소들을 획득할 수 없는 경우 영상과 GIS 자료간의 위치 관계를 결정할 수 없을뿐더러 위치 관계 정립의 결과는 정합 요소들의 분포 및 정확도에 매우 의존하게 된다. 또한 이러한 점 정합 요소들을 정의하기 위해서는 대부분의 경우 수동적으로 이루어질 수밖에 없다. 따라서 본 연구에서는 영상 및 GIS 자료의 선형 정보를 이용하여 정확한 점 정합 요소들을 모르더라도 영상과 GIS 자료간의 위치 관계를 결정할 수 있는 기법을 제시하고자 한다. 사용된 알고리즘은 개선된 Hough 변환(Modified Hough Transform)을 기반으로 다수의 선형 정보 중에 정합되는 요소들을 자동으로 찾아내고 이들을 최소제곱법으로 풀이함으로써 두 데이터간의 기하학적 변환 관계를 결정하는 기법이다. 본 연구에서는 이와 같은 접근을 통해 데이터간의 기하학적 변환 관계를 결정한 후, 영상 상에는 존재하지만 GIS 자료에는 존재하지 않는 선형 정보에 대한 갱신 여부를 확인하고 갱신함으로써 3차원 위치 자료의 자동 생성에 대한 가능성을 제시하고자 한다.로 갈수록 퇴적이 우세한 것으로 관측되었다.보체계의 구축사업의 시각이 행정정보화, 생활정보화, 산업정보화 등 다양한 분야와 결합하여 보다 큰 시너지 효과와 사용자 중심의 서비스 개선을 창출할 수 있는 기반을 제공할 것을 기대해 본다.. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of th

  • PDF

Accelerated Convolution Image Processing by Using Look-Up Table and Overlap Region Buffering Method (Loop-Up Table과 필터 중첩영역 버퍼링 기법을 이용한 컨벌루션 영상처리 고속화)

  • Kim, Hyun-Woo;Kim, Min-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.17-22
    • /
    • 2012
  • Convolution filtering methods have been widely applied to various digital signal processing fields for image blurring, sharpening, edge detection, and noise reduction, etc. According to their application purpose, the filter mask size or shape and the mask value are selected in advance, and the designed filter is applied to input image for the convolution processing. In this paper, we proposed an image processing acceleration method for the convolution processing by using two-dimensional Look-up table (LUT) and overlap-region buffering technique. First, based on the fixed convolution mask value, the multiplication operation between 8 or 10 bit pixel values of the input image and the filter mask values is performed a priori, and the results memorized in LUT are referred during the convolution process. Second, based on symmetric structural characteristics of the convolution filters, inherent duplicated operation region is analysed, and the saved operation results in one step before in the predefined memory buffer is recalled and reused in current operation step. Through this buffering, unnecessary repeated filter operation on the same regions is minimized in sequential manner. As the proposed algorithms minimize the computational amount needed for the convolution operation, they work well under the operation environments utilizing embedded systems with limited computational resources or the environments of utilizing general personnel computers. A series of experiments under various situations verifies the effectiveness and usefulness of the proposed methods.

Effects of Spatio-temporal Features of Dynamic Hand Gestures on Learning Accuracy in 3D-CNN (3D-CNN에서 동적 손 제스처의 시공간적 특징이 학습 정확성에 미치는 영향)

  • Yeongjee Chung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • 3D-CNN is one of the deep learning techniques for learning time series data. Such three-dimensional learning can generate many parameters, so that high-performance machine learning is required or can have a large impact on the learning rate. When learning dynamic hand-gestures in spatiotemporal domain, it is necessary for the improvement of the efficiency of dynamic hand-gesture learning with 3D-CNN to find the optimal conditions of input video data by analyzing the learning accuracy according to the spatiotemporal change of input video data without structural change of the 3D-CNN model. First, the time ratio between dynamic hand-gesture actions is adjusted by setting the learning interval of image frames in the dynamic hand-gesture video data. Second, through 2D cross-correlation analysis between classes, similarity between image frames of input video data is measured and normalized to obtain an average value between frames and analyze learning accuracy. Based on this analysis, this work proposed two methods to effectively select input video data for 3D-CNN deep learning of dynamic hand-gestures. Experimental results showed that the learning interval of image data frames and the similarity of image frames between classes can affect the accuracy of the learning model.

Marine-Life-Detection and Density-Estimation Algorithms Based on Underwater Images and Scientific Sonar Systems (수중영상과 과학어탐 시스템 기반 해양생물 탐지 밀도추정 알고리즘 연구)

  • Young-Tae Son;Sang-yeup Jin;Jongchan Lee;Mookun Kim;Ju Young Byon;Hyung Tae Moo;Choong Hun Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.373-386
    • /
    • 2024
  • The aim of this study is to establish a system for the early detection of high-density harmful marine organisms. Considering its accuracy and processing speed, YOLOv8m (You Only Look Once version 8 medium) is selected as a suitable model for real-time underwater image-based object detection. Applying the detection algorithm allows one to detect numerous fish and the occasional occurrence of jellyfish. The average precision, recall rate, and mAP (mean Average Precision) of the trained model are 0.931, 0.881, and 0.948 for the validation data, respectively. Also, the mAP for each class is 0.97 for fish, 0.97 for jellyfish and 0.91 for salpa, all of which exceed 0.9 (90%) for classes demonstrating the excellent performance of the model. A scientific sonar system is used to address the object-detection range and validate the detection results. Additionally, integrating and grid averaging the echo strength allows the detection results to be smoothed in space and time. Mean-volume back-scattering strength values are obtained to reflect the detection variability within the analysis domain. Furthermore, an underwater image-based object (marine lives) detection algorithm, an image-correction technique based on the underwater environmental conditions (including nights), and quantified detection results based on a scientific sonar system are presented, which demonstrate the utility of the detection system in various applications.