• Title/Summary/Keyword: 속도계수

Search Result 2,452, Processing Time 0.03 seconds

Numerical Investigation of Drag and Lift Characteristics of Cavitator of Supercavitating Underwater Vehicle (초공동 수중운동체 캐비테이터의 항력과 양력특성에 관한 수치해석적 연구)

  • Kang, Byung Yun;Jang, Seyeon;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.797-805
    • /
    • 2014
  • The purpose of this study was to investigate the drag and lift characteristics of the cavitator of a supercavitating underwater vehicle and the pressure loss due to water intake. These investigations were performed by changing the diameter, velocity, radius of curvature of the intake, and angle of attack of the cavitator. With increasing ratio of the intake diameter to the cavitator diameter ratio($d/D_1$), the drag coefficient and the pressure loss coefficient of the water intake decreased. The greater the increase in the ratio of the intake velocity-to-free stream velocity ratio(S), the smaller was the decrease in the drag coefficient and the lift coefficient. When the intake had a radius of curvature(c), the pressure loss coefficient decreased. On the contrary, the effect of the radius of curvature on the drag coefficient was imperceptible. For angles of attack (${\alpha}$) of the caviatator in the range of $0^{\circ}$ to $10^{\circ}$, the drag coefficient and the pressure loss coefficient changed slightly, whereas the lift coefficient increased linearly with increasing angle of attack.

Prediction for Pore Structure of Cement Mortar Exposed to Freezing-Thawing Action by Ultrasonic Pulse Velocity Measurement (초음파 속도 측정을 통한 동결·융해 작용을 받는 시멘트 모르타르의 공극 구조 예측)

  • Pang, Gi-Sung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.421-426
    • /
    • 2017
  • In this paper, the effect of freezing-thawing action on the dynamic modulus and porosity was examined by ultrasonic pulse velocity (UPV) measurement. UPV was measured every 30 cycles during the freezing-thawing test, and dynamic modulus and porosity of cement mortar were calculated by relationship among UPV, porosity and dynamic modulus. Porosity analysis was also performed to compare with calculated porosity by mercury intrusion porosimetry (MIP). From the test, it was found that dynamic modulus of cement mortar was decreased 13% after 300 cycles. The calculated porosity was increased about 30% compared with the initial porosity before freezing-thawing action. The calculated porosity showed similar increase tendency with the porosity measured by MIP. So, it can be concluded that the porosity change of cementitious materials by freezing-thawing action can be predicted by UPV measurement.

Ethanol Production Using Alginate Immobilized Cells of Zymomonas rnobilis (고정화 Zymomonas mobilis 균체로부터 에탄올 생산)

  • 한면수;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.588-596
    • /
    • 1992
  • The fermentation characteristics of ethanol production by the use of immobilized Zymomonas mobilis KCTC 1534 cells were investigated in terms of formation factors such as substrate and product concentration. In batch fermentation, the maximum values of specific ethanol productivity, specific substrate uptake rate, ethanol yield, and glucose conversion rate were $29.14g/{\ell}{\cdot}h$, $60.24g/{\ell}{\cdot}h$, 0.48g/g, and 98.4%, respectively, with 17% glucose medium, and its ethanol productivity was $2.91g/{\ell}{\cdot}h$ in the case of 25 hour fermentation time. Repeated batch fermentation was possible for 30 days with 2.24-$2.94g/{\ell}{\cdot}h$ ethanol productivity. In semicontinuous fermentation, the maximum ethanol productivity was shown to be $15.7g/{\ell}{\cdot}h$ at $0.36h^{-1}$ effective dilution rate with 17% glucose concentration. In this case, ethanol yield coefficient and glucose conversion rate were 0.39 g/g, 64.7%, respectively.

  • PDF

Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period (재령 변화에 따른 콜드조인트를 가진 GGBFS 콘크리트의 탄산화 거동)

  • Cho, Sung-Jun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.259-266
    • /
    • 2018
  • In the work, the carbonation behavior and strength characteristics in cold-joint concrete are evaluated for OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag)concrete considering three levels of curing age (28, 91 and 365 days). The compressive strength in GGBFS concrete is level of 86% of OPC concrete at the 91 days of curing period, but is level of 107% at 365 curing days due to hydration reaction. Carbonation velocities in both OPC and GGBFS concrete significantly decease after 91 curing days. The effect of cold joint on carbonation is evaluated to be small in GGBFS concrete. The increasing ratios of carbonation velocity in cold joint are 1.06 and 1.33 for 28-day and 365-day curing condition, respectively. However they decreases to 1.08 and 1.04 for GGBFS concrete for the same curing conditions.

Comparison of Rock Young's Moduli Determined from Various Measurement Methods (다양한 시험법으로 규명된 암반 탄성계수 비교)

  • Ryu Kuen-Hwan;Chang Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-14
    • /
    • 2006
  • Various measurements were carried out to estimate the modulus of deformation in two dominant rock types in Korea: granite and gneiss. Four most commonly used methods were utilized: Goodman jack tests, PS well logging, laboratory ultrasonic tests and laboratory uniaxial loading tests. Laboratory static and dynamic Young's moduli depend on the magnitude of the applied axial stress, range of Sequency used for measurement and the loading/unloading condition. As the laboratory measurement condition approaches to that in situ, the resultant moduli also appear to be comparable to that in situ. This suggests that the simulation of in situ stress condition is important when the modulus of rock is determined in the laboratory Dynamic Young's modulus is generally higher than static Young's modulus because of (micro)crack behavior in response to the stress, different range of frequency used for measurements, and the effect of the amplitude of deformation. Understanding of the relations in moduli from different measurement methods will help estimate appropriate in situ values.

Development of Site Classification System and Modification of Site Coefficients in Korea Based on Mean Shear Wave Velocity of Soil and Depth to Bedrock (기반암 깊이와 토층 평균 전단파속도를 이용한 국내 지반분류 방법 및 지반 증폭계수 개선)

  • Kim, Dong-Soo;Lee, Sei-Hyun;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.63-74
    • /
    • 2008
  • Site response analyses were performed based on equivalent linear technique using the local geologic and dynamic site characteristics, which include soil profiles, shear wave velocity profiles and depth to bedrock for 125 sites collected in Korean Peninsula. From the results of site response analyses, 2-parameters site classification system based on the combination of mean shear wave velocity of soil and depth to bedrock was newly recommended for regions of shallow bedrock depth in Korea. First, as the borders of bedrock depth (H) for site classification were determined as 10m and 20m, the soil sites were divided into 3 classes as $H_1$, $H_2$ and $H_3$ sites. And then, the 3 site classes were subdivided into 7 classes based on the mean shear wave velocity of soil ($V_{s,soil}$). The feasibility of new site classification system was verified and the representative site coefficients ($F_a$ and $F_v$) and design response spectrum were suggested by analyzing uniform trend and dispersion of site coefficients for each site class. The suggested site coefficients and the regression curves present the nonlinear characteristics of soils according to the change of rock outcrop acceleration with uniform trend effectively. From the comparison between the mean values of response spectrum which was acquired from the site response analysis and the suggested design response spectrum, there was a little difference in some of site classes and it was verified to adjust the integration interval to make it more suitable for the site condition in Korea.

Analysis of Observer Agreement in Shear Wave Elastography using a Breast Phantom (유방 팬텀을 활용한 전단파 탄성초음파 검사에서의 관측자 일치도 분석)

  • Jin-Hee Kim;Jung-Hoon Kim;Sung-Hee Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.355-363
    • /
    • 2024
  • This study evaluated the clinical utility of Shear Wave Elastography(SWE) by analyzing the differences in elastic modulus and shear wave speed across various types of breast tissue and assessing inter-observer agreement. A breast phantom that included normal breast tissue, benign tumors, and malignant tumors was utilized, and ten radiologists participated, measuring the minimum, average, and maximum elastic modulus and shear wave speed for each tissue type. Analysis of differences between tissues was conducted using one-way ANOVA, and intra- and inter-observer agreement was assessed using the Intraclass Correlation Coefficient(ICC). The results demonstrated significant differences in the average values of elastic modulus and shear wave speed among the tissue types(p<0.001), with malignant tumor tissues showing the highest average values. Furthermore, the ICC analysis for elastic modulus ranged from 0.75 to 0.99 and for shear wave speed from 0.89 to 0.99, indicating high reproducibility and agreement. These findings suggest that SWE is a reliable tool with high reproducibility and specificity for the diagnosis of breast cancer.

Development of a model to predict Operating Speed (주행속도 예측을 위한 모형 개발 (2차로 지방부 도로 중심으로))

  • 이종필;김성호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2002
  • This study introduces a developed artificial neural networks(ANN) model as a more efficient and reliable prediction model in operating speed Prediction with the 85th percentile horizontal curve of two-way rural highway in the aspect of evaluating highway design consistency. On the assumption that the speed is decided by highway geometry features, total 30 survey sites were selected. Data include currie radius, curve length, intersection angle, sight distance, lane width, and lane of those sites and were used as input layer data of the ANN. The optimized model structure was drawn by number of unit of hidden layer, learning coefficient, momentum coefficient, and change in learning frequency in multi-layer a ANN model. To verify learning Performance of ANN, 30 survey sites were selected while data in obtained from the 20 cites were used as learning data and those from the remaining 10 sites were used as predictive data. As a result of statistical verification, the model D of 4 types of ANN was evaluated as the most similar model to the actual operating speed value: R2 was 85% and %RMSE was 0.0204.

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구)

  • Kang, Seung Mo;Abdelmotalib, Hamada;Ko, Dong Guk;Park, Woe-Chul;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.861-869
    • /
    • 2015
  • In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.