• Title/Summary/Keyword: 소형화 기술

Search Result 1,042, Processing Time 0.026 seconds

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

The three dimensional measuring system for ELF magnetic fields with the multiturn loop-type sensors (멀티턴 루우프형 센서를 이용한 3차원 ELF 자장측정계)

  • Lee, Bok-Hee;Lee, Jeong-Gee;Kil, Gyung-Suk;Ahn, Chang-Hwan;Park, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.29-36
    • /
    • 1996
  • With the three dimensional magnetic field measuring system dealt with in this paper, accurate measurements and analyses of extremely low frequency(ELF) magnetic fields caused by starting and/or operating electric devices and power installations can be conducted. To obtain high performance for lower frequency and spatial components without any distortion, the measuring system is designed as three dimensionally including the multiturn loop-type magnetic field sensors, differential amplifiers and active integrators. As the results of calibration experiments, the frequency response characteristics of the measuring system range from 8[Hz] to about 53[kHz] for each direction of x, y, z axes, and the response sensitivities are 9.54, 9.21, $10.89[mV/{\mu}T]$, respectively. The actual survey experiments by using an oscillating impulse current generator confirm a reliability of the proposed measuring system. Also, through the other experiments by using small-sized induction motors, the magnetic field intensities when starting and steady-state operating mark 15.8, $8.61[{\mu}T]$ as maximum value, respectively. And those intensities decrease steeply according as the measuring distance increases.

  • PDF

Assessment of the Potential Environmental Impact of Smart Phone using LCA Methodology (LCA 기법을 활용한 스마트폰의 잠재적 환경영향평가)

  • Heo, Young-chai;Bae, Dae-sik;Oh, Chi-young;Suh, Young-jin;Lee, Kun-mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.527-533
    • /
    • 2017
  • Environmental concern about smart phone is growing because it has short product life span while having intensive production technology and cost. In this study environmental impact of the smart phone is quantified using the LCA methodology based on the ISO 14040 series standards. The assessment considers potential environmental impacts across the whole life cycle of the smart phone including; pre-manufacturing; manufacturing; distribution; product use; and end-of-life stages. The pre-manufacturing stage is the most dominant life cycle stage causing the highest environmental impacts among all 10 impact categories assessed. The global warming impacts of the smart phone in the pre-manufacturing, distribution, use, manufacturing, and end-of-life stages were 52.6% 23.9%, 15.7%, 7.0%, and 0.8%, respectively. Sensitivity of the life cycle impact assessment results to the system boundary definition and assumptions made were quite high. Three components of the smart phone, PCB, battery, and display module were identified as the key components causing majority of the potential environmental impact in the pre-manufacturing stage. As such the slim and light-weight design and the use of environmental friendly materials are important design factors for reducing the environmental impact of the smart phone.

Pozzolanicity of Calcined Sewage Sludge with Calcination and Fineness Conditions (소성조건 및 분말도에 따른 소성하수슬러지(CSS)의 포졸란 특성)

  • So, Hyoung-Seok;So, Seung-Young;Khulgadai, Janchivdorj;Kang, Jae-Hong;Lee, Min-Hi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This study discussed the pozzolanic properties of calcined sewage sludge (CSS) according to calcination and fineness conditions. The chemical and mineralogical analysis of CSS according to calcination temperature and time were carried out and compared with that of the existing pozzolanic materials such as fly-ash, blast furnance slag and meta-kaolin. Various mortars were made by mixing those CSS and $Ca(OH)_2$ (1:1 wt. %), and their compressive strength and hydrates according to experimental factors such as fineness of CSS and curing age were also investigated in detail. The results show clearly the potentiality of calcined sewage sludge (CSS) as an admixture materials in concrete, but the CSS should be controlled by calcination temperature and time, and fineness etc. In this experimental condition, the calcination temperature of $800^{\circ}C$, calcination time of 2 hours and fineness of $5,000cm^2/g$ were optimum conditions in consideration of the mechanical properties and economic efficiency of CSS. The compressive strength of CSS mortars was higher than that of fly-ash mortars and blast furnace slag mortars, especially at the early ages. Then, the utilization of CSS in construction fields was greatly expected.

Fundamentals of Ultrasonic Welding (초음파 용접의 기초)

  • ;Jeong, H. S.
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.24-31
    • /
    • 1997
  • 2매의 금속을 맞대어 그 한 쪽에 접촉면과 평행하게 고주파진동을 가하면 단 시간에 접합된다. 이공정을 초음파 용접이라고 하며 그 물리적인 본질은 아직 불분명 하지만, 첫째로는 강한 마찰에 의해 금속 자유면의 산화물층이 제거되기 때문이라는 점과 둘째로는 마찰에 의해 금속 표면이 강하게 가열되어 이에 따른 연화에 의해 접합 이 된다고 하는 점이다. 그러나 이와 같이 가열된다고 하더라도 가열은 표면부에만 국한되고 다른 부분은 가열되지 않는다. 따라서 초음파용접은 냉간접합이라고도 한다. 또 가압력과 진동에 의한 힘이 동시에 작용하기 때문에 용접할 면을 미리 청정하게 할 필요는 없고 용접전의 단계에서 자연적으로 청정화가 이루어진다고 하는 사실이 간접 적으로 증명되고 있다. 초음파 용접(Ultrasonic welding)의 특징을 요약하면 고상용접 의 일종으로서 용접중에 국부적으로 고주파 진동에너지와 압력을 가하여 용접하는 방법이다. 이 때 모재를 용융시키지 않고 건전한 야금학적 결합부가 얻어진다는 데에 큰 특징이 있다. 또한 초음파용접은 다른 용접법에 비해 경제성이 매우 높고, 초음파 용접에 필요한 출력이 전기아크 용접에 필요한 출력의 5 - 10%로 충분한 경우가 많다. 초음파 용접은 통상의 방법으로는 용접하기 어려운 동종 금속이나 이종 금속의 용접에 널리 사용된다. 이 용접법은 반도체, 미세회로, 전기 접점의 형성에 대한 생산기술 로서 사용되고 있는데 소형 모터, 알루미늄 박의 가공, 알루미늄 합금의 조립 등에 이용되고 있다. 한편 최근에는 자동차, 우주항공산업 분야의 구조제 용접용으로도 채용되고 있다.출함이 바람직하다.분비되는 배설-분비 항원의 자극과 깊은 관계가 있음을 알 수 있었다.넌트 명세서를 대한 XML DTD(Document Type Definition)를 정의하고, HTML 기반 검색 방법과 XML 기반 검색 방법에 대한 컴포넌트 검색 성능을 비교한다.따라 NO 생산 및 세포독성이 증가하였고. NO 생산을 저하시키는 약제들은 활성화된 복강 대식세포 및 RAW264.7 세포에 의한 질편모충에 대한 세포독성을 현저히 감소시키는 것으로 보아 NO는 질편모충에 대한 대식세포의 숙주 방어기전에서 중요한 역할을 감당할 것으로 생각된다.nction index) 와 최대개구시 동통의 정도는 시술전과 시술 4주후간에 유의한 차이가 관찰되었다.피부온도는 검사자간에는 특정부위에 따라 다소 차이가 있을 수 있으나 일반적으로 높은 재현성을 보여줌으로서 향후 교근 및 측두근의 임상연구 평가에 피부온도조사는 도움이 되리라 사료된다. lactobacilli의 양은 peroxidase system을 함유하거나(p < 0.01) 함유하지 않은(p < 0.05) 치약을 사용한 군 모두에서 양치전에 비해 유의성있게 감소하였다. 6. 양치후 30분에 채취한 구강건조증 환자의 자극성 전타액내 S. mutans 양은 peroxida system을 함유한 세치제를 사용한 군에서 대조군에 비해 유의성있게 낮았다(p < 0.05). 7. 양치후 30분에 채취한 구강건조증 환자의 자극성 전타액내 lactobacilli양은 peroxidase system을 함유한 세치제를 사용한 군에서 대조군에 비해 상대적으로 낮게 나타났으나(p = 0.067)

  • PDF

A Comparative Study on Power Tool Manufacturers' Products Spec. and Design Development Features - By the Case Study on BOSCH, BLACK&DECKER and KEYANG Electrics- (전동공구 회사의 제품사양별 디자인개발특성 비교연구 -보슈(BOSCH), 블랙앤데커(BLACK&DECKER), 계양전기 사례를 중심으로 -)

  • 채승진
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.383-392
    • /
    • 2004
  • The power tools is the product using working power generated by electric motor. Many companies are manufacturing numerous devices. Main features of tools are included various assembled products, small, light and solid and durable enough to match several standards. Fundamental requirements for the product is excellent performance and convenience for use. The quality of them depends on the equipped motor'(s) capability, accuracy of gear and endurance against worn-out. By adapting the state-of-the-art parts, they could be used in the place from home to heavy industry broadly. They can be classified electronic drills, grinders, saws and sanders families for the household appliances. For industrial tools, bore drill, grinder, polisher, and driver drill are classified as special and high priced group. This study presents the strategy of power tool development of BOSCH, BLACK&DECKER and KEYANG. Their products were analyzed in terms of product line and product mix concept. Then they are examined by design elements, such as color, shape and material for housing. As an analysis method, the image scale parameter and criteria were applied to each company's product.

  • PDF

Large-view-volume Multi-view Ball-lens Display using Optical Module Array (광학 모듈 어레이를 이용한 넓은 시야 부피의 다시점 볼 렌즈 디스플레이)

  • Gunhee Lee;Daerak Heo;Jeonghyuk Park;Minwoo Jung;Joonku Hahn
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • A multi-view display is regarded as the most practical technology to provide a three-dimensional effect to a viewer because it can provide an appropriate viewpoint according to the observer's position. But, most multi-view displays with flat shapes have a disadvantage in that a viewer watches 3D images only within a limited front viewing angle. In this paper, we proposed a spherical display using a ball lens with spherical symmetry that provides perfect parallax by extending the viewing zone to 360 degrees. In the proposed system, each projection lens is designed to be packaged into a small modular array, and the module array is arranged in a spherical shape around a ball lens to provide vertical and horizontal parallax. Through the applied optical module, the image is formed in the center of the ball lens, and 3D contents are clearly imaged with the size of about 0.65 times the diameter of the ball lens when the viewer watches them within the viewing window. Therefore, the feasibility of a 360-degree full parallax display that overcomes the spherical aberration of a ball lens and provides a wide field of view is confirmed experimentally.

A Study on Development and Site selection of an AIRFIELD (경비행장 개발 및 입지선정에 관한 연구)

  • Park, Sang-Yong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.3-36
    • /
    • 2015
  • As of end of 2014, the population engaging in aviation activities for leisure has reached approximately 13 million, where approximately 356 cases involve a general aircraft, 200 cases involve light aircraft, and 636 cases involve an ULM. The industry for leisure has become a very promising industry in line with rapidly rising living standards which are expected to further increase in the future. The demand for such services is expected to increase over time. The purpose of this paper is to review the development and site selection of airfields in anticipation of these developments in the industry. While the government also has experience in the review of airfield location and candidate sites, it is not the government that carries out the actual construction. As such, the feasibility of the site needs to be verified in terms of actual construction. This study identified factors for Site Selection of factors through a review of related documents and existing research reports. A questionnaire was also used to collect the views of experts in the field, which was then analyzed. The Research model was confirmed in the layered form for an AHP analysis. The factors for Site Selection were identified as the technical / operational factors and economic / political elements for a two-stage configuration. The third step consisted of technical and operational elements. The final step is was constructed a total of 11 elements (weather, surface conditions, obstacle limitation surface, airspace conditions, operating procedures, noise problems, environmental issues, availability of facilities, construction and investment costs, contribution to the local economy, accessibility, demand / the proximity of demand). The surveys are conducted for more than 10 General and light aircraft pilots, professionals, and instructor. The analysis results showed a higher level in the technical / operating elements (73.2%) in the first step, while the next step sawa higher level of the operational elements (30.9%) than the other. The factors for Site Selection were any particular elements did not appear high, the weather conditions (17.5%), noise problems (19.8%), the proximity of demand (6%), accessibility (5.7%), environmental issues (11.1%), availability of facilities (8%), airspace conditions (7.9%), obstacle limitation surface (12%), construction and investment costs (4.2%) and to operating procedures (4.9%), contribution to the local economy (3.8%).