• Title/Summary/Keyword: 소포자

Search Result 102, Processing Time 0.02 seconds

Cytological Analysis of Microspores during Temperature Pretreatment in Anther Culture of Capcicum annuum L. (고추의 약배양 시 온도 전처리에 따른 소포자의 세포학적 변화 분석)

  • 김문자;장인창
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.263-271
    • /
    • 2001
  • Inoculated anthers of Capsicum annuum L. were subjected to 4 and 32$^{\circ}C$ pretreatment and their influence on the microspore viability, early cytological changes and the induction frequency of microspore embryo was investigated. Viability of freshly isolated microspores was between 62 and 64%. During temperature pretreatment, microspore viability showed a rapid decrease and this tendency enhanced with the 32$^{\circ}C$ pretreatment. Irrespective of temperature pretreatment, microspore viability declined to nearly zero after nine days. Before temperature pretreatment, most of the microspores in anthers were at late uninucleate stage. Several types of multinuclear microspores appeared from the 2 day after culture onwards, together with many degenerated and non-induced microspores. The 32$^{\circ}C$ pretreatment gave higher proportions of embryogenic microspore than other treatment. However, the temperature pretreatment had no clear effect on the frequencies of symmetrical binucleate rnicrospore. The multinucleate grains might originate either by symmetrical or asymmetrical division. After 2 days of pretreatment at 25 and 32$^{\circ}C$ , degenerated microspore increased above 50%. In contrast, during 4$^{\circ}C$ treatment, nucleus of most microspores remained intact for 14 days. The 32$^{\circ}C$ pretreatment produced more embryos than 4$^{\circ}C$ treatment. The most effective period of 32$^{\circ}C$ pretreatment was 4 days. In contrast, effective period of 4$^{\circ}C$ pretreatment was 2 days and longer time had deleterious effect on induction of microspore embryo.

  • PDF

Morphology and Protein Pattern During Microspore-derived Embryogenesis of Brassica napus (유채 소포자 유래 배의 발달과정에 따른 형태와 단백질 양상)

  • 윤석준
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.399-406
    • /
    • 1993
  • 유채(Brassica napus L. cv. Topas) 소포자 배양에 의한 기내 배발생 과정을 관찰하고 발생과정에 따른 총단백질의 변화 양상을 이차원 전기영동을 통하여 분석하였다. 배양에 적합한 소포자의 발달 단계는 4,6-diamidino-2-phenylindole (DAPI) 형광염색으로 핵상관찰을 통하여 결정하였다. 최초의 소포자 생존율은 63.9%였으며 이러한 생존율의 차이로 배양초기에 소포자의 이형성이 나타났다. 배 발달 경로에 따른 최초의 세포분열은 화분벽 안에서 균등분열로 시작되어 배병의 발달이 선행된 후 배 발생이 일어났으며, 구형, 심장형, 어뢰형으로의 배 발달은 여러 조직의 분화와 더불어 빠르게 진행되었다. 소포자배 발달과정을 치상단계의 소포자, 배양 3일째의 초기 분열세포, 구형 및 심장형배, 어뢰형배, 성숙한 자엽단계의 배 등의 5단계로 나누어 각각 2차원 전기영동을 수행한 결과, 최초 소포자 단계에서 나타났던 23개의 단백질들은 배 달달 경로로 진행됨에 따라 사라지고, 배양 3일째에는 8개의 단백질이 특이적 또는 지속적으로 발현되었다. 배의 발달과 더불어 20∼50 kD 사이에서 총 42개의 단백질이 급격히 나타나거나 또는 후기 배로 진행하면서 점차적으로 발현되었다.

  • PDF

Characterization of Cultured Angelica gigas Microspores by Flow Cytometry (당귀 배양 소포자의 Flow Cytometric 특성)

  • Park, Chung-Heon;Seong, Nak-Sul;Yu, Hong-Seob;Pauls, K. Peter
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.196-201
    • /
    • 1997
  • To characterize active cells during microspore culture of Angelica gigas, flow cytometric and epifluorescent techniques were applied. The knowledge obtained from these types of studies will give us insight into early stage in plant development and may lead to the application of microspore-derived from haploid plants for breeding in recalcitrant species. Viability of cultured microspore differed depending on the developmental stages. Frequencies of active cells from tetrad, uni-nucleate, bi-nucleate and matured pollen were 12.8, 49.3, 42.3 and 31.7%, respectively. Alive microspores have luminescent the green fluorescence stained with FDA and blue fluorescence stained with DAPI.

  • PDF

Influence of donor plant growth condition, microspore isolation method, culture medium, and light culture on the production of embryos in microspore culture of hot pepper (Capsicum annuum L.) (고추의 소포자 배양 시 모식물의 생육조건, 소포자 나출 방법, 치상배지 및 광배양이 배의 발생에 미치는 영향)

  • Lee, Jong-Suk;Park, Eun-Joon;Kim, Moon-Za
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.363-373
    • /
    • 2007
  • To establish an efficient and reliable microspore culture system for pepper (Capsicum annuum L.), the effect of light intensity used for donor plant's growth, microspore isolation methods, the composition of culture medium, and culture period in light on the production of embryos were investigated. The viability of microspores taken from the plants grown under the light intensity of 10,000 lux was almost same as that from the lower (5,500 lux) light intensity, and the embryo induction and development were a bit higher when donor plants were grown under the lower light intensity. This result implies that lower light intensity does not interfere with the embryo induction and development. However, it was very difficult to prepare microspores for culture since only a small number of flower buds could be harvested from plants grown under the light intensity of 5,500 lux. Microspore isolation methods greatly affected microspores viability; that is, when microspores were isolated by blending rather than maceration, the greater number of viable microspores were easily generated (about 13 times). Among media used for microspores culture in this study, MN medium was most efficient for embryo induction and development. Total number of embryos and the number of cotyledonary embryos were highest when microspores were cultured in dark for 4 weeks, and then in light for one week. These results will be provide valuable information to set up efficient microspore culture system of hot pepper with a high frequency of embryo production, which are applicable to gene transformation and mutagenesis.

GFP expression in the microspore-derived early embryo through co-culturing with Agrobacterium (Agrobacterium 공동배양을 이용한 고추 소포자 유래 초기 배의 GFP 발현)

  • Jung, Min;In, Dong-Su;Kim, Bong-Kyu;Jang, In-Chang;Park, Eun-Joon;Kim, Moon-Za;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.109-114
    • /
    • 2008
  • The aim of this research is to establish the conditions for Agrobacterium-mediated genetic transformation using microspore. The embryo induction from the microspore was examined under several Kanamycin concentration in media, and the induction rate decreased about 4, 8, 10 times when the Kanamycin concentration increased 10, 50, 100 mg/L, respectively. This indicates that the transformation rate would be much lower if the Kanamycin was used for selection marker. In order to apply the GFP gene as a reporter gene for Agrobacterium-mediated genetic transformation, GFP expression from the microspore-mediated embryos was observed using GFP filter under microscope. The GFP expression occurred when the microspore cultured toward the embryo development for 12, 24 and 48 days. The microspore formed a cluster by microspore division from 12 days culture and continuously became a bigger mass. We obtained a total of 8 GFP-expressing embryos suggesting that the transformation of microspore occurred. However, those young embryos were not fully developed. Further study pertinent to culture conditions is required to fulfill the Agrobacterium-mediated genetic transformation using microspore.

Effects of Culture Condition on Embryogenesis in Microspore Culture of Brassica napus L. Domestic Cultivar 'Tammiyuchae' (국내 육성 품종 '탐미유채'의 소포자 배양 시 배양조건이 배발생에 미치는 영향)

  • Kim, Kwang-Soo;Lee, Yong-Hwa;Cho, Hyeon-Jun;Jang, Young-Seok;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.317-323
    • /
    • 2012
  • For the establishment of an efficient embryogenesis from microspore culture in Brassica napus L. domestic cultivar 'Tammiyuchae', four different factors affecting microspore embryogenesis and plantlet regeneration were investigated. The highest embryogenesis rate was achieved when microspores at late uninucleate to early binucleate stage were isolated from flower buds with a length of 3.0~3.5 mm. On average, 388 embryos generated from 1 ml of microspores media. The highest number of embryos was obtained when microspores were subjected to $32.5^{\circ}C$ for 2 days. Embryogenesis of 'Tammiyuchae' was increased with increasing microspore culture density up to about $5{\times}10^4ea/mL$. Gradually higher culture density repressed embryogenesis of microspores. Regeneration rate of shoots from microspore-derived embryos was observed in MS solid medium supplemented with $0.5mg{\cdot}L^{-1}$ NAA and $1.0mg{\cdot}L^{-1}$ BA, and grew well in MS solid medium without plant growth regulators.

Comparison with in Vivo Pollen Development of Domestic Cultivars in Brassica Napus L. (국내육성 유채품종의 생체 내 화분발육 비교)

  • Park, Yoon-Jung;Kim, Kwang-Soo;Jang, Young-Seok;Kim, Chul-Woo;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.242-246
    • /
    • 2006
  • This study was showed into the pollen development with in vivo by bud size and genotype. Microspores of buds from 2.0 mm to 2.5 mm of all genotypes were composed of mainly tetrad cells and early uninucleate stage cells. Microspores derived from buds of 2.5-3.0 mm were exposed cells of early uninucleate, middle uninucleate, and late uninucleate. Microspores from buds of 3.0-3.5 mm contained mostly late uninucleate stage cells and showed some early binucleate stage cells. Microspores of buds with 3.5-4.0 mm in length were composed of mainly binucleate stage cells and decreased late uninucleate stage cells. Microspore with more than 4.0 mm were entered into binucleate stage cells of divided generative nucleus and vegetative nucleus. In 'Tamlayuchae', microspores derived from buds of 3.5-4.0 mm were observed cells of late uninucleate stage and early binucleate stage because of late microspore development. In MS-maintainer, the spring type, microspore derived from buds of 2.5-3.0 mm were observed tetrad stage cells.

Effect of Phenylacetic Acid (PAA) on Embryo Formation in Anther and Microspore Culture of Paeonia lactiflora (작약의 약 및 소포자 배양에서 Phenylacetic Acid [PAA]가 배형성에 미치는 영향)

  • Kwon, Yong-Sham;Shin, Young-Ae;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.193-198
    • /
    • 2002
  • The objective of this study was to determine the effects of phenylacetic acid (PAA) on embryo production in anther and microspore culture of herbaceous peony (Paeonia lactiflora Pall.). The anthers of herbaceous peony were cultured on MS medium with 0 to 100 mg/L PAA according to two-step culture method. The ruptured anthers were transferred onto embryo formation medium without growth regulators. The MS medium with 2 mg/L PAA was effective in enhancing of direct embryogenesis and producing of normal embryo with two cotyledons from the cultured anthers. However, the increase of PAA concentration more than 5 mg/L PAA inhibited the embryo formation and promoted to callus formation from the anthers. The PAA affects significantly on the division of microspore and embryo formation in shed pollen culture and the best result was obtained from a medium supplement with 2 mg/L PAA. The preculture of anther for 10 days on solid medium with 2 mg/L PAA was effective for embryo formation from shed microspore of herbaceous peony.

Callus and Embryo Formation from Microspore Culture of Peony(Paeonia lactiflora Pall.) (작약(芍藥)의 화분소포자(花粉小胞子)로부터 캘러스와 배(胚) 형성(形成))

  • Sohn, Jae Keun;Kim, Kyung Min;Kwon, Yong Sham
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.51-55
    • /
    • 1994
  • Pollen microspores isolated from peony anthers were cultured by agarose embedding method in the MS medium with 2,4-D(1mg/l) or phenylacetic acid(1, 10, 100mg/l), and without plant hormone. It was observed that pollen microspores cultured on hormone-free medium were directly developed into embryos. Callus formation was enhanced from microspores which were cultured on medium supplemented with 1mg/l PAA. Embryos were also formed from the calli transferred into the hormone-free medium.

  • PDF

Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions (배추 유전자원의 소포자 유래 배 발생 효율에 미치는 배양 조건 구명)

  • Seo, Mi-Suk;Sohn, Seong-Han;Park, Beom-Seok;Ko, Ho-Cheol;Jin, Mina
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.116-122
    • /
    • 2014
  • Total of fifty accessions of Brassica rapa with various morphological characteristics were used for production of double haploid plants though microspore culture in Brassica rapa. Among them, only 30 accessions induced embryos from microspores. The highest efficiency of embryo induction of 1.194 per bud was obtained from IT135449 of turnip type, while 3 accessions of sarson (winter oil) type did not generate embryo. The effect of heat shock periods for embryogenesis was also investigated with 4 accessions (IT135449; Turnip type, IT199710; Chinese cabbage type, IT212886; Pak choi type, IT218043; Summer oil type). The high productions of embryos were observed in IT135449, IT199710 and IT212886 when microspores were pre-cultured to $32^{\circ}C$ for 2 days. In IT218043, high embryogenesis was observed at the 3 days of heat shock treatment. The optimal condition of shoot regeneration for IT199710 was observed in MS medium supplemented with NAA $0.5mg{\cdot}L^{-1}$ and BAP $1mg{\cdot}L^{-1}$. In contrast, the IT135449 and IT212886 were observed high regeneration frequency in MS medium without plant growth regulators. All the plantlets regenerated from microspore-derived embryos have been successfully transplanted to soil, and bud self-pollinated seeds were produced from doubled haploid plants. This indicated that double-haploid genotype was likely generated naturally during embryogenesis process.