DOI QR코드

DOI QR Code

Effects of Culture Condition on Embryogenesis in Microspore Culture of Brassica napus L. Domestic Cultivar 'Tammiyuchae'

국내 육성 품종 '탐미유채'의 소포자 배양 시 배양조건이 배발생에 미치는 영향

  • Kim, Kwang-Soo (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Lee, Yong-Hwa (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Cho, Hyeon-Jun (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Jang, Young-Seok (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Park, Kwang-Geun (Bioenergy Crop Research Center, National Institute of Crop Science)
  • 김광수 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 이영화 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 조현준 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 장영석 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 박광근 (농촌진흥청 국립식량과학원 바이오에너지작물센터)
  • Received : 2012.07.09
  • Accepted : 2012.09.18
  • Published : 2012.12.31

Abstract

For the establishment of an efficient embryogenesis from microspore culture in Brassica napus L. domestic cultivar 'Tammiyuchae', four different factors affecting microspore embryogenesis and plantlet regeneration were investigated. The highest embryogenesis rate was achieved when microspores at late uninucleate to early binucleate stage were isolated from flower buds with a length of 3.0~3.5 mm. On average, 388 embryos generated from 1 ml of microspores media. The highest number of embryos was obtained when microspores were subjected to $32.5^{\circ}C$ for 2 days. Embryogenesis of 'Tammiyuchae' was increased with increasing microspore culture density up to about $5{\times}10^4ea/mL$. Gradually higher culture density repressed embryogenesis of microspores. Regeneration rate of shoots from microspore-derived embryos was observed in MS solid medium supplemented with $0.5mg{\cdot}L^{-1}$ NAA and $1.0mg{\cdot}L^{-1}$ BA, and grew well in MS solid medium without plant growth regulators.

국내 육성 유채 품종의 소포자 배양을 통한 효율적인 소포자배 생산법의 확립을 위해 '탐미유채'를 대상으로 소포자 배양 시 적당한 꽃봉오리의 크기, 고온처리시간, 배양밀도, 기내 증식조건 등의 배양조건을 구명하고자 실시한 결과, 소포자배 발생은 1핵기말과 2핵기 초기 상태의 소포자가 포함된 3.0~3.5 mm 크기의 꽃봉오리에서 채취한 소포자에서 배발생률이 가장 높았으며, 배지 1 mL 당 약 388개의 소포자 배가 발생하였다. 배양 초기에 $32.5^{\circ}C$에서 2일간 열처리하였을 때 배발생률이 가장 높았다. 소포자의 배양밀도에 따른 배발생은 $5{\times}10^4$개/mL일 때 가장 높았으며, 배양밀도가 더 이상 높아지면 배발생을 억제하였다. 발생한 소포자배는 $0.5mg{\cdot}L^{-1}$ NAA와 $1mg{\cdot}L^{-1}$ BA가 첨가된 MS 고체배지에 치상하여 배양하면 정상적인 신초로 재분화되었고, 발달한 신초를 절취하여 식물성장 조절제가 첨가되지 않은 MS고체배지에서 배양하면 뿌리가 발달하여 정상적인 식물체로 성장하였다.

Keywords

References

  1. Abdollahi, M. R., A. Moieni, P. Haddadi, and M. Jalali Javaran. 2005. Effects of heat shock and culture density on the embryo induction in isolated microspore cultures of Brassica napus L. cv. Global. Pakistan J. of Biological Sciences 8 : 89-91. https://doi.org/10.3923/pjbs.2005.89.91
  2. Bang, J. K., J. I. Lee, and L. S. Kott. 1991. Embryogenesis and plant regeneration in rapeseed microspore culture. Korean J. Breed. 23(3) : 257-262.
  3. Binarova, P., G. Hause, V. Cenklova, J. H. G. Cordewener, and M. M. van Lookeren Campagne. 1997. A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sexual Plant Reproduction 10 : 200-208. https://doi.org/10.1007/s004970050088
  4. Chuong, P. V., C. Deslauriers, L. S. Kott, and W. D. Beversdorf. 1988 Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Can. J. Bot. 66 : 1653-1657. https://doi.org/10.1139/b88-225
  5. Dunwell, J. M., M. Cornish, and de A. G. L. Courcel. 1985. Influence of genotype, plant growth temperature and anther incubation temperature on microspore embryo production in Brassica napus ssp. oleifera. J. Exp. Bot. 36 : 679-689. https://doi.org/10.1093/jxb/36.4.679
  6. Ferrie, A. M. R. and W. A. Keller. 1995. Microspore culture for haploid plant production. In : Gamborg O. L., Phillips G. C. (eds) Plant Cell, Tissue and Organ Culture: fundamental methods. Springer, Berlin Heidelberg New York, pp. 155-164.
  7. Gamborg, O. L., R. A. Miller, and L. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research. 50 : 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  8. Gu, H. H., P. Hagberg, and W. J. Zhou. 2004. Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regulation 42 : 137-143. https://doi.org/10.1023/B:GROW.0000017488.29181.fa
  9. Huang B., S. Bird, R. Kemble, D. Simmonds, W. Keller, and B. Miki. 1990. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Reports 8 : 594-597. https://doi.org/10.1007/BF00270061
  10. Jang, Y. S., I. H. Choi, Y. B. Oh, S. Y. Cho, D. H. Chong, and H. C. Oh. 1997. New early-maturing, flower of large size and the use of sightseeing rapeseed variety "Tammiyuchae". Kor. J. Breed. 29 : 507-507.
  11. Jang, Y. S., K. S. Min, Y. B. Oh, and D. H. Chung. 1997. Comparisons of developmental stages of microspore by bud size and embryogenesis from its microspore in Brassica species. Korean J. Breed. 29 : 480-485.
  12. Kim, K. S., M. Y. Li, Y. S. Jang, Y. J. Park, and J. K. Bang. 2008. Production of haploids from proton ion and gammaray irradiation treated M2 generation of isolated microspores in Brassica napus L. ssp. oleifera. Korean J. Crop Sci. 53 : 16-50-155.
  13. Lo, K. H. and K. P. Paules. 1992. Plant growth environment effects on rapeseed microspore development and culture. Plant Physiol. 99 : 468-472. https://doi.org/10.1104/pp.99.2.468
  14. Loh, C. S., D. S. Ingram, and D. E. Hanke. 1983. Cytokinins and the regeneration of plantlets from secondary embryoids of winter oilseed rape, Brassica napus ssp. oleifera. New Phytologist 95 : 349-358. https://doi.org/10.1111/j.1469-8137.1983.tb03502.x
  15. Murashige, E. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tabacco tissue culture. Physiol. Plant. 15 : 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Nitsch. C. and J. P. Nitsch. 1967. The induction of flowering in vitro in stem segments of Plumbago indical L. I. The production of vegetative buds. Planta. 72 : 355-370. https://doi.org/10.1007/BF00390146
  17. Takahata, Y. and W. A. Keller. 1991. High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Science, 74 : 235-242. https://doi.org/10.1016/0168-9452(91)90051-9
  18. Thurling, N. and P. M. Chay. 1984. The influence of donor plant genotype and environment on production of multicellular microspores in cultured anthers of Brassica napus ssp. oleifera. Annals of Botany. 54 : 681-693.
  19. Wan, G. L., M. S. Naeem, X. X. Geng, L. Xu, B. Li, G. Jilani, and W. J. Zhoui. 2011. Optimization of microspore embryogenesis and plant regeneration protocols for Brassica napus. Int. J. Agric. Biol., Vol. 13, No. 183-88.
  20. Zhang, Y., A. Wang, Y. Liu, Y. Wang, and H. Feng. 2012. Improved production of doubled haploids in Brassica rapa through microspore culture. Plant Breeding 131 : 164-169. https://doi.org/10.1111/j.1439-0523.2011.01927.x

Cited by

  1. Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions vol.41, pp.3, 2014, https://doi.org/10.5010/JPB.2014.41.3.116
  2. Influence of culture duration and conditions on embryogenesis of isolated microspore culture in cabbage (Brassica oleraceae L. var. capitata) vol.44, pp.1, 2017, https://doi.org/10.5010/JPB.2017.44.1.027
  3. 십자화과 작물의 종속간 교배를 통한 화색변화 경관용 자원식물 개발 vol.31, pp.1, 2018, https://doi.org/10.7732/kjpr.2018.31.1.077