• Title/Summary/Keyword: 소음의 감쇠

Search Result 537, Processing Time 0.023 seconds

Analysis of the Thermo-Elastic Damping of a Beam-Type Resonator (보형 공진기의 열탄성 감쇠 해석)

  • Rhee, Huinam;Park, Junsung;Sarapuloff, Sergii A.;Han, Soon Woo;Park, Jin Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.682-686
    • /
    • 2014
  • This paper deals with the thermo-elastic damping (TED) due to the temperature change in a beam when it is in a resonant condition. Based on previous references, the analytical formulation for TED of a resonant thin beam was derived, and then TED was expressed as a function of the geometry of the beam, especially, its thickness. It was clearly shown that TED of a resonant beam is significantly varied for different thickness. Finally, the worst thickness of the beam has been identified in regard to the high-Q factor, and the result was compared to the finite element analysis.

  • PDF

Effects of Seal Wear on the Rotordynamics of Multistage Turbine Pump (씨일마모가 다단터빈펌프 동적거동에 미치는 영향)

  • 김영철;이동환;이봉주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.253-259
    • /
    • 1997
  • 씨일의 마모에 따른 터빈펌프의 동적거동을 고찰하기 위해서 10단 터빈펌프를 대상으로 유한요소법에 의한 동특성 해석을 수행하였다. 베어링과 씨일의 동적계수를 회전속도의 하수로 계산하였으며, 이를 동적거동해석에 적용하였다. 해석결과 씨일들은 그 간극이 커질수록 강성 및 감쇠계수가 크게 떨어지고 누설량이 급격히 늘어남을 확인하였다. 따라서 1차 위험속도(1st Critical Speed) 이하에서 충분한 분리여유(Seperation Margine)를 가지고 정상운전되도록 설계된 터빈펌프라 할지라도 장기적 사용시 마모가 진전됨에 따라 계의 1차 위험속도가 변하여 운전속도에 접근할 수 있으며, 아울러 이 때 씨일의 감쇠가 크게 줄어들어 급격한 진동의 증가를 가져올 수 있음을 보였다.

  • PDF

An Experimental Study on a Magneto-Rheological Fluid Damper for Structural Control Subject to Base Excitation (지반 기진력을 받는 구조물의 진동제어를 위한 자기유변 감쇠기의 실험적 연구)

  • 김병현;정종안;문석준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.767-773
    • /
    • 2004
  • Semi-active control systems have attracted a great deal of attention in recent years, because they offer the adaptability of active devices without requiring large Power sources. One of the most Promising semi-active devices proposed for structural control is magneto-rheological fluid dampers (MR damper). In this paper, an MR damper having the capacity of about 1 ton was designed and fabricated. and series of tests were performed to grasp the fundamental Performance characteristics of it. It was also applied to a 6-story steel structure under random excitation and 3-different seismic excitations for the confirmation of its validity on structural vibration absorption. Through this study, the techniques and know-hows for MR damper production were acquired.

Modified Sliding Mode Control of Structures Using MR Dampers (MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어)

  • 민경원;정진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Kim, H.J.;Ryu, B.J.;Jung, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • The paper presents the influences of the external damping and the tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached mechanical parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

Comparison of Test Methods for Vibration Damping Properties (진동감쇠특성 시험법 비교)

  • Shin Su Hyun;Lee Yong Bong;Jung Sung Soo;Lee Doo Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.852-860
    • /
    • 2004
  • There are many standard methods for measuring vibration damping properties of the beam type material. Among them, three standards ASTM E 756, ISO 6721 and JIS G 0602, are compared. Loss factor and Young's modulus of the steel beam are evaluated by using five different methods and their results are compared. Logarithmic decay method and half-power bandwidth method are used to calculate the loss factor. It was observed that Young’s modulus is agree well, but loss factors are different from test to test. So the same test method must be applied to measure damping properties.

Nonlinear Vibration Analysis of Thin Perforated Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.639-647
    • /
    • 2002
  • The nonlinear vibration of the thin perforated plate is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the tension plate is obtained from dynamic condensation for the mass and stiffness matrices. Tension wire is modeled using the lumped parameter method to effectively describe its contact interactions with the plate. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. From the evaluation of the computational accuracy and computation time for the deduced impact stiffness and damping coefficient, we determined proper values for the simulation works, accounting for the computational accuracy as well as the computational efficiency. Finally we discussed the results of nonlinear nitration analysis for variations of their design parameters.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Wind Load Mitigation for Transmission Tower using Viscoelastic Damper (점탄성감쇠기를 이용한 송전철탑 풍하중의 저감)

  • Min, Kyung-Won;Park, Ji-Hun;Moon, Byoung-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

Forced Vibration Analysis of Multi-Layered Damped Sandwich Beam (샌드위치형 다층 감쇠보의 강제진동 응답 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.608-611
    • /
    • 2005
  • In this paper the general equation of motion of damped sandwich beam including arbitrary viscoelastic material layer was derived based on the equation presented by Mead and Markus. The equation of motion of n-layered sandwich beam was represented by (n+3)th order ordinary differential equation. It was verified that the general equation of motion derived in this paper could represent the equations of motions for single-layered, three-layered, five-layered and multi-layered damped beam. Finite element method for the arbitrary-layered damped beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

  • PDF