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ABSTRACT 

This paper deals with the thermo-elastic damping (TED) due to the temperature change in a beam 
when it is in a resonant condition. Based on previous references, the analytical formulation for TED 
of a resonant thin beam was derived, and then TED was expressed as a function of the geometry of 
the beam, especially, its thickness. It was clearly shown that TED of a resonant beam is significantly 
varied for different thickness. Finally, the worst thickness of the beam has been identified in regard 
to the high-Q factor, and the result was compared to the finite element analysis. 

 
1. Introduction


  

Thermo-elastic damping (TED) is related to the 

temperature change due to the expansion and 

contraction inside an elastic body when it is 

oscillating. The first study of TED  was done by 

C.Zener(1). (See also L.D.Landau & E.M.Lifshitz(2).) 

Since then numerous researchers have 

performed TED related studies including 

mechanical & aerospace industries. TED for a 

nano-scale structure can also be found in 

R.Lifshitz, & M.L.Roukes(3). 

TED has an important role in the design of a 

resonator to obtain high Q factor as possible. If the 

fused quartz is used as a material for such as the 

hemispherical resonator gyroscope the effect of 

TED may be secondary because other damping 
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mechanisms are more governing. On the other hand, 

for the metals (like Elinvar™ and other steels) 

TED cannot be ignored. 

This paper mainly deals with the study on the 

dependency of TED on the shape of a resonant 

thin beam. Especially, the worst thickness of the 

resonant beam in regard to the high Q factor is to 

be identified theoretically, so that the proposed 

procedure can be utilized for the design of a high 

Q beam resonator.  

 

2. Thermo-Elastic Equation of a Resonant 

Beam 

Let us consider the beam as shown in Fig.1. 

The beam is assumed to be resonating in a 

specific flexural mode. The boundary conditions 

at the left and right ends can be free, pinned, or 

fixed, respectively. 

 

한국소음진동공학회 2014년 추계학술대회

682



Figure 1. Beam-type resonator 
 

Considering the relationship between the 

stresses and strains including the effect of the 

heating for the thin resonating beam in Fig. 1, the 

force equilibrium equation(3) can be derived as Eq. 

(1). 
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where ߩ  is the density, ܻ  is the transverse 

displacement, A=bc is the cross-section area, ߙ 

is the linear thermal-expansion coefficient, and ܫ 
is the moment of inertia of the cross section. ்ܫ 
is defined as Eq. (2), 

 

்ܫ ൌ නߠݕ	ݖ݀ݕ݀
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,																							ሺ2ሻ 

which is the thermal moment of inertia of the 

cross-section. In Eq. (2), ߠ  is the relative 

temperature field. The rate of change of 

temperature is expressed as Eq. (3)(4). 
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where χ ൌ ௣ܥ/ߢ  is the thermal diffusivity, ߢ  is 

the thermal conductivity, and ݑ௝௝  is the strain. 

The specific heat capacities ሺܥ௣, ௩ሻܥ  are 

volumetric ones.  Eq. (3) can be expressed as 

Eq. (4) by considering the relationship between 

the strain, displacement and thermal expansion. 
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where ଴ܶ  is the equivalent temperature, and 

αଶܧ ଴ܶ/ܥ௣  (= ∆ா ), is defined as the relaxation 

strength of Young’s modulus. 

By assuming ܻሺݔ, ሻݐ ൌ ଴ܻሺݔሻ݁௜ఠ௧, and ߠሺݔ, ,ݕ ሻݐ ൌ
,ݔ଴ሺߠ  ., Eq. (4) can be expressed as Eq. (5)	ሻ݁௜ఠ௧ݕ
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Then, by assuming the following relation,  
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and applying the insulation boundary condition at 

the upper and lower surfaces, Eq. (7) is obtained. 
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where k is a complex number. Then the equation 

for ߠ଴ሺݔ,  :ሻ is as followsݕ
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Now, by substituting Eq. (8) into Eq. (2), we 

obtain Eq. (9), 
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and Eq. (1) becomes 
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where ݂ሺ߱ሻ is 
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In Eq. (10), let us define ܧሼ1 ൅ ∆ாሾ1 ൅ ݂ሺ߱ሻሿሽ ൌ
 ఠ. The natural frequency equation of a beam(5)ܧ

is	
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where ߚ is a coefficient determined by boundary 

conditions. Substituting ܧఠ into ܧ (an isothermal 

Young’s modulus) into Eq. (12), we get the 

complex natural frequency equation as Eq. (13). 
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Therefore, we get 
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where ߦ is defined as 
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TED can be calculated as the form of Q inverse 

as Eq. (16)(3) 
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Using Eqs. (13), (14) and (16), we obtain the 

following TED equation: 
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Fig.2 shows TED value as a function of ߦ. It is 
revealed that the maximum damping, which 

corresponds to the lowest Q-factor, occurs at 

  .2.225=ߦ

 

 

Figure 2. Thermo-elastic damping as a function of ࣈ 

3. Prediction of the worst thickness 

corresponding to the lowest Q factor 

Using Eqs. (12) and (15), the following 

relationship can be derived: 
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The numerical values of ܮߚ are shown in Table 

1 for different boundary conditions, therefore, ߚ 

can be determined for a fixed ܮ. In this paper L 

and c are fixed as 50 mm and 1 mm, respectively, 

as an example.  

 

Table 1 ܮߚ for different boundary conditions 
boundary 

condition 
 ࡸࢼ

free-free 4.73 

fixed-pinned 3.92 

fixed-free 1.87 

pinned-pinned 3.14 

 

Material properties of Aluminum in Table 2 are 

used for a numerical calculation. 

 
Table 2 Material properties of Aluminum 

Name Value 

mass density 2698.9 kg/m3

Young's modulus 68 109 Pa 

Poisson's ratio 0.36 

thermal expansion coefficient 23.1 10-6 1/K

heat capacity at constant pressure 900 J/kg K

thermal conductivity 210 W/m K

 

Using Eq. (18) and the maximum TED condition, 

 as discussed in section 2, the worst ,2.225=ߦ

thickness can be easily obtained, and the result 

is presented in Table 3 

 

Table 3 Worst thickness for various boundary conditions in 

regard to high Q factor 
Boundary 

condition 
Worst thickness 

fixed-fixed 0.404mm 

fixed-pinned 0.458mm 

fixed-free 0.75mm 

pinned-pinned 0.53mm 
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4. Finite element analysis for TED and 

comparison with the analytical result 

The finite element analysis (FEA) for TED 

evaluation was performed using COMSOL ver. 

3.5. The typical model is shown in Fig. 3. The 

geometry of the beam and boundary conditions 

are identical with the analytical case to compare 

their results.  

 

Figure 3. Finite element model for thermo-elastic 

analysis 

 

Figs. 3~7 show the FEA results, and the peaks 

correspond to maximum TED. The worst 

thickness values obtained by FEA are 

summarized in Table 4, which presents the FEA 

results matches very well with the analytical 

ones. 

 

 

Figure 4. Thermo-elastic damping by finite element 

analysis for fixed-fixed condition 

 

 

Figure 5. Thermo-elastic damping by finite element 

analysis for fixed-pinned condition 

 

 Figure 6. Thermo-elastic damping by finite element 

analysis for fixed-free condition 

 

Figure 7. Thermo-elastic damping by finite element 

analysis for pinned-pinned condition 
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Table 4 Comparison of worst thicknesses for different 

boundary conditions 

boundary 

condition 

worst 

thickness 

(analytical) 

worst 

thickness 

(FEM) 

deviation

free-free, 0.404mm 0.4mm 1% 

fixed-pinned, 0.458mm 0.458mm 0% 

fixed-free 0.75mm 0.75mm 0% 

pinned-pinned 0.53mm 0.5mm 6% 

 

5. Conclusion 

Thermo-elastic damping of a beam-type 

resonator was analyzed theoretically. The 

procedure to identify the worst thickness of the 

resonant beam for various boundary conditions in 

regard to the high Q factor is presented in this 

paper. Finite element analysis was also 

performed to numerically evaluate the thermo-

elastic damping, and the results showed good 

consistency with the analytical ones. 

TED has an important role for the design of a 

high Q metal resonator, which can be used in 

high-precision vibratory sensors. The 

methodology presented here can be extended to 

more complex resonant structures such as ring, 

cylindrical, or spherical types. 
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