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Analysis of the Thermo-Elastic Damping of a Beam-Type Resonator
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ABSTRACT

This paper deals with the thermo-elastic damping (TED) due to the temperature change in a beam
when it is in a resonant condition. Based on previous references, the analytical formulation for TED
of a resonant thin beam was derived, and then TED was expressed as a function of the geometry of
the beam, especially, its thickness. It was clearly shown that TED of a resonant beam is significantly
varied for different thickness. Finally, the worst thickness of the beam has been identified in regard
to the high-Q factor, and the result was compared to the finite element analysis.

1. Introduction

Thermo-elastic damping (TED) is related to the
temperature change due to the expansion and
contraction inside an elastic body when it is
oscillating. The first study of TED was done by
C.Zener. (See also L.D.Landau & E.M.Lifshitz?.)
Since then numerous researchers
performed TED related studies
mechanical & aerospace industries. TED for a
nano-scale structure can also be found in
R.Lifshitz, & M.L.Roukes®.

TED has an important role in the design of a
resonator to obtain high Q factor as possible. If the
fused quartz is used as a material for such as the
hemispherical resonator gyroscope the effect of
TED may be secondary because other damping

have
including
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mechanisms are more governing. On the other hand,
for the metals (like Elinvar™ and other steels)
TED cannot be ignored.

This paper mainly deals with the study on the
dependency of TED on the shape of a resonant
thin beam. Especially, the worst thickness of the
resonant beam in regard to the high Q factor is to
be identified theoretically, so that the proposed
procedure can be utilized for the design of a high
Q beam resonator.

2. Thermo—Elastic Equation of a Resonant
Beam

Let us consider the beam as shown in Fig.1.
The beam is assumed to be resonating in a
specific flexural mode. The boundary conditions
at the left and right ends can be free, pinned, or
fixed, respectively.
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Figure 1. Beam-type resonator

Considering the relationship between the
stresses and strains including the effect of the
heating for the thin resonating beam in Fig. 1, the
force equilibrium equation(B)
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where p is the density, Y is the transverse
displacement, A=bc is the cross—section area, a
is the linear thermal-expansion coefficient, and I
is the moment of inertia of the cross section. Iy
is defined as Eq. (2),

Ir = fy@ dydz, (2)
A

which is the thermal moment of inertia of the
cross—section. In Eq. (2), 8 is the relative
temperature field. The rate of change of
temperature is expressed as Eq. ).
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where y =x/C, is the thermal diffusivity, x is
the thermal conductivity, and w;; is the strain.
The specific heat capacities (G, C,) are
volumetric ones. Eq. (3) can be expressed as
Eq. (4) by considering the relationship between
the strain, displacement and thermal expansion.
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where T, is the equivalent temperature, and

Ea*T,/C, (=Ag), is defined as the relaxation
strength of Young’s modulus.
By assuming Y (x,t) = Yy(x)e't, and 0(x,y,t) =

0y(x,y)ei*t | Eq. (4) can be expressed as Eq. (5).

)

Then, by assuming the following relation,

can be derived as Eq.
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o — y Asin(ky) + B cos(ky), (6)

and applying the insulation boundary condition at
the upper and lower surfaces, Eq. (7) is obtained.
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where kis a complex number. Then the equation
for 6y(x,y) is as follows:

Ap 0%y (x)
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Now, by substituting Eq. (8) into Eq. (2), we
obtain Eq. (9),
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and Eq. (1) becomes
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where f(w) is
24 bk
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In Eq. (10), let us define E{1 + Ag[1 + f(w)]} =
E,. The natural frequency equation of a beam"”
is
El
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where B is a coefficient determined by boundary
conditions. Substituting E,, into E (an isothermal
Young’s modulus) into Eq. (12), we get the
complex natural frequency equation as Eq. (13).

1 (13)
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Therefore, we get
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where ¢ is defined as

E=b\/§ . (15)
2y

TED can be calculated as the form of & inverse
as Eq. (16)%
Im(w)
-1 _

=2 Re(w)
Using Egs. (13), (14) and (16), we obtain the
following TED equation:

. (16)

_Ea’Ty (6 6 sinh¢ +sing
B (62 €3cosh§+cosf> -7

-1
Q —Cp
Fig.2 shows TED value as a function of &. It is
revealed that the maximum damping, which
corresponds to the lowest @-factor, occurs at
§=2.225.
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Figure 2. Thermo-elastic damping as a function of §

3. Prediction of the worst thickness
corresponding to the lowest Q factor

Using Egs. (12) and (15), the following
relationship can be derived:
£ = b |— (18)
2y |12p

The numerical values of BL are shown in Table
1 for different boundary conditions, therefore, g
can be determined for a fixed L. In this paper L

and c are fixed as 50 mm and 1 mm, respectively,
as an example.

Table 1 BL for different boundary conditions

contiio o
free—free 4.73
fixed-pinned 3.92
fixed-free 1.87
pinned-pinned 3.14

Material properties of Aluminum in Table 2 are
used for a numerical calculation.

Table 2 Material properties of Aluminum

Name Value
mass density 2698.9 kg/m®
Young's modulus 68 10° Pa
Poisson's ratio 0.36
thermal expansion coefficient 23.110° 1/K
heat capacity at constant pressure | 900 J/kg K
thermal conductivity 210 W/m K

Using Eq. (18) and the maximum TED condition,
&§=2.225, as discussed in section 2, the worst
thickness can be easily obtained, and the result
is presented in Table 3

Table 3 Worst thickness for various boundary conditions in

regard to high Q factor
Egﬁgﬁ?;: Worst thickness
fixed-fixed 0.404mm
fixed-pinned 0.458mm
fixed-free 0.75mm
pinned-pinned 0.53mm




4. Finite element analysis for TED and
comparison with the analytical result

The finite element analysis (FEA) for TED
evaluation was performed using COMSOL ver.
3.5. The typical model is shown in Fig. 3. The
geometry of the beam and boundary conditions
are identical with the analytical case to compare
their results.

Figure 3. Finite element model for thermo-elastic
analysis

Figs. 3~7 show the FEA results, and the peaks
correspond to maximum TED. The worst
thickness values obtained by FEA are
summarized in Table 4, which presents the FEA
results matches very well with the analytical
ones.

0.003

0.0025 /A\
0.002

T 00015 / \
0.001 / \\
0.0005
"lq.--
) / "'—-—-_.____._________-
01 06 11 16
Width{mm)

Figure 4. Thermo-elastic damping by finite element
analysis for fixed-fixed condition
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Figure 5. Thermo-elastic damping by finite element
analysis for fixed-pinned condition
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Figure 6. Thermo-elastic damping by finite element
analysis for fixed-free condition
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Figure 7. Thermo-elastic damping by finite element
analysis for pinned-pinned condition




Table 4 Comparison of worst thicknesses for different
boundary conditions

bound worst worst
con dit?(z thickness | thickness | deviation
(analytical) | (FEM)
free—free, 0.404mm 0.4mm 1%
fixed-pinned, | 0.458mm | 0.458mm 0%
fixed-free 0.75mm 0.75mm 0%
pinned-pinned| 0.53mm 0.5mm 6%
5. Conclusion
Thermo-elastic damping of a beam-type
resonator was analyzed theoretically. The

procedure to identify the worst thickness of the
resonant beam for various boundary conditions in
regard to the high Q factor is presented in this
paper. Finite element analysis also
performed to numerically evaluate the thermo-
elastic damping, and the results showed good
consistency with the analytical ones.

TED has an important role for the design of a
high Q metal resonator, which can be used in
high-precision vibratory The
methodology presented here can be extended to
more complex resonant structures such as ring,
cylindrical, or spherical types.
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