• 제목/요약/키워드: 소음의 감쇠

Search Result 537, Processing Time 0.026 seconds

On Dyamping Characteristics of Viscoelastic Materials (점탄성재료의 진동감쇠특성에 관한 연구)

  • 이우식;이준근
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.99-107
    • /
    • 1994
  • Viscoelastic materials are widely used to solve the vibration and noise problems. To apply the well-known damping technologies successfully to the vibration and noise problems, the damping characteristics of the viscoelastic materials applied to the base structures must be thoroughly understood. The objectives of the present study are : 1) to establish the damping measurement technique via modal testing by which the damping characteristics of viscoelastic materials can be measured in the university laboratory environment, and 2) to develop a computer program to draw the reduced-frequency-nomogram by use of restricted number of experimental data, which can be used efficiently for the damping analysis and application.

  • PDF

The Design and Construction of the Anechoic Chamber (무향실의 설계 및 제작)

  • 이득웅
    • Journal of the KSME
    • /
    • v.35 no.10
    • /
    • pp.896-902
    • /
    • 1995
  • 소음의 저감 대책은 소음원의 소음 감쇠, 소음 전달 경로의 소음 저감 및 수음자에 대한 대책 으로 나눌 수 있다. 여기에서 소음원의 소음 저감 대책을 세우기 위해서는 소음원의 주파수 특 성을 정확하게 분속해야 하고 이를 위해서는 자유음장이라는 공간이 필요하게 된다. 음향학적 으로 자유음장이란 점음원으로부터 무지향적으로 방사되는 음의 음압레벨(sound pressure level )을 따르는 음장으로 정의된다. 이는 음원으로부터 거리가 두 배 증가함에 따라 음압레벨이 6dB 감소함을 의미한다. 즉, 주변 소음으로부터 발생한 음이 다른 물체나 벽으로부터 반사된 반사음 이나 회절음의 영향을 받지 않는 음장을 말한다. 자유음장은 자연계에서 극히 제한적으로 존재 하지만 인간이 측정장비 및 측정 대상물을 이동시켜 이용할 수 없으므로 인공적인 시설로서 무 항실을 만들어 자유음장 환경을 조성한다. 이 글에서는 무항실의 특성 및 국내에서 시공되는 무향실의 설계 및 제작 과정을 간단히 소개하고 현재의 국내 무항실의 수준과 앞으로 나아갈 방항을 제시하고자 한다.

  • PDF

Developing Tuned Mass Damper of Adjustable Damping Type to Control the Vibrations of Medical Robots (의료용 로봇의 미진동제어를 위한 가변감쇠형 동조질량감쇠기 기술 개발)

  • Cha, WoonYong;Chun, ChongKeun;Park, SangGon;Han, HyunHee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.706-715
    • /
    • 2014
  • Recently, the medical community has been enthusiastically welcoming robots that are able to provide high-quality medical services across the board, including assisting the surgeons during surgeries. In response, many higher education institutions and research facilities started to conduct various experiments and studies about these robots. During such research, it was discovered that the arm of one particular robot type that is being developed to assist surgeries are prone to vibrate even from the weakest impact, in addition to other residual vibration problems. We attempted to reduce such dynamic response by using a MF-TMD that is produced by adding magnetic fluid to ECD. We verified the MF-TMD's performance by testing it within various frequency bands and attenuations. We then designed a cantilever that was structurally similar to the robot's arm. We attached the MF-TMD to this cantilever and conducted a pilot experiment, which validated our hypothesis that MF-TMD will reduce the robot arm's vibrations through its optimal damping ratio. Henceforth, we attached the MF-TMD to the robot arm in question and conducted a performance experiment in which we tuned the MF-TMD's frequency and damping factor to its optimal level and measured the vibrations of the arm. The experiment demonstrated that the vibrations that occurred whenever the arms rotated were significantly reduced.

Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper (지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Experimental Performance Evaluation of a 2-way TLMD using a TLCD and a Rubber Bearing-type TMD (TLCD와 고무패드형 TMD를 이용한 2방향 TLMD의 성능평가실험)

  • Heo, Jae-Sung;Kim, Hong-Jin;Jo, Bong-Ho;Jo, Ji-Seong;Park, Eun-Churn;Lee, Sang-Hyun;Lee, Sung-Kyung;Kim, Dong-Young;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.465-470
    • /
    • 2007
  • In this paper, a two-way tuned liquid mass damper(TLMD) using a tuned liquid column damper(TLCD) and a rubber-bearing-type tuned mass damper(TMD) was manufactured for controlling two-way direction acceleration responses of a high-rise building structure. The proposed controlling device behaves as a tuned liquid column damper in one direction and as a tuned mass damper in the other direction. In this study, Performance evaluation of the downscaled model is conducted. The results show that the two-way controllability is behaved independently each other and realscale TLMD applicable to the high-rise building can be designed.

  • PDF

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.849-855
    • /
    • 2008
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

Effects of the Finite Ground Impedance on the Excess Attenuation of Noise (지표면 임피던스에 의한 소음의 초과감쇠에 관한 연구)

  • Kim, Dong-Il;Kang, Byoung-Yong;Chang, Ho-Gyeong;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.5-14
    • /
    • 1994
  • In this study, the ground impedance is measured using the standing wave method in a free field on the grass, the soil, and the ground covered with asphalt and cement. And the excess attenuation of sound is investigated. Results are obtained in the frequency range between 300Hz and 1000Hz. There are very good agreements between the results of the measured ground impedance and the prediction of Delanyand Bazley. The ground impedance is increased in order the grass, the soil, the asphalt and the cement road, decreased with frequency for each the ground. The excess attenuation of sound is mainly determined by the ground impedance. The experimental results of the excess attenuation over the different types and the microphone heights are compared with the theoretical values.

  • PDF

System Identification of a Three-story Test Structure based on Finite Element Model (유한요소모델에 기초한 3층 건물모델의 시스템 식별)

  • 이상현;민경원;강경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.416-423
    • /
    • 2004
  • In this paper, an experimental verification of system identification technique for constructing finite element model is conducted for a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for AMD, and the corresponding accelerations of each floor are measured. Then, the complex frequency response function (FRF) for the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated. The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper (MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF