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ABSTRACT

In this paper, an experimental verification of system identification technique for constructing finite
element model is conducted for a three-story test structure equipped with an active mass driver
(AMD).
accelerations of each floor are measured. Then, the complex frequency response function (FRF) for
the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters

Twenty Gaussian white noises were used as the input for AMD, and the corresponding

and system matrices were estimated. The magnitudes as well as phase of experimentally obtained
FRFs match well with those of analytically obtained FRFs.
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1. Introduction

2R24), Active Mass Driver{ 5%

engineering structures subjected to earthquake and

In recent years, researches have been
extensively carried out analytically and
experimentally on the active control of civil
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wind loads."™? Generally, the accurate modeling
of the structure is required in active control in
order to achieve stability and desired control
performance. Accordingly, system
identification methods have been utilized for the
accurate modeling of the structure.®™ In special,
most of experimental research on active control
relies on the accurate system identification, and
the control performances of adopted control
algorithms guaranteed by the

various

are accurate
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estimation of test models.®™®

For design of control systems in active control
of structures under seismic loads, two separate
system matrices are first identified for two input
signals earthquakeload and active control force and
then condensed into an integrated system matrix.
@10 Thig procedure, however, is only applicable
for small-sized structures which are suitable for
the shaking table test. It is almost impossible to
apply seismic forces to real civil structures for
system identification purpose.

In general, the mass, damping, and stiffness of
civil structures are modeled using the finite
element method (FEM). The FEM model has an
advantage that earthquake loads are easily
modeled. However, the FEM model may show a
large discrepancy with the actual structure in
dynamic  characteristics due to

uncertainties includedin modeling. In this case, it is

terms  of

required to refine the FEM model applying system
identification techniques in order to guarantee the
system, 1112
Otherwise, a new control algorithm, which shows

desired performance of control

performance in spite of the
in FEM modeling, needs to be

a robust control
uncertainties
developed.

In this paper, an experimental verification of
system Identification technique for constructing
second-order system is conducted for a three-story
test structure equipped with an active mass driver
(AMD). All of acceleration information of AMD,
shaking table, and three floors are used for the
system identification.

2. Experimental Setup

Experimental investigations were performedin
the Structural Lab at Seoul National University,
Seoul,

experiment was a three-story,

Korea. The test structure used in this

single-bay, steel
frame shown in Fig. 1. The height and width of

the structure were 120 cm and 60 cm, respec-
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tively. Shevron braces were used to stiffen the
test structure so that its behavior in moving
direction governed. The structure was excited by
a uniaxial shaking table on which it was mounted.
The shaking table used an AC servomotor and its

i

Fig. 1 Test Structure with AMD system
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Fig. 2 Schematic diagram of experimental setup
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movement was controlled by a separate computer
through a National Instrument (NI) LAB-PC-1200
D/A board and an NI BNC-2081 board.

The control force was supplied by an AMD
attached to the top floor of the test structure. The
AMD was comprised of a moving mass of 4.7 kg,
a ball screw unit, and an AC servomotor. The
maximum stroke of the AMD was 150 mm with
the maximum acceleration generating capacity of
500 cm/sec’.

The accelerometers were positioned on  each
floor of the structureto measure the absolute
accelerations of the test structure. Additionally,
accelerometers located on the AMD and on the
base measured the absolute accelerations of the
AMD and the ground excitation. A linear variable
differential (LVDT)
transducer was installed on the first floor to

transformer displacement

measure the floor displacement. The dafa

acquisition and implementation of the digital
controller were performed using a real-time digital
signal processor (DSP). The primary tasks of the
data acquisition board were to perform the analog
to digital (A/D) conversion of the measured
acceleration data, and to perform the digital to
analog (D/A) conversion of the command signal
computed by the control program. A 16-channel
data acquisition system was employed using a NI
PCI-MIO-16XE-50 board and a NI BNC-2090
board. The schematic of the entire test system is

presented in Fig. 2.
3. System Identification
It is critical to develop an accurate analytical

model of the
verification of control systems.

the experimental
(s)

structure in
In general, the
steps involved in the experiment on a control
system are (1) establishing an exact model of test
structure  applying the system identification
techniques. (2) designing a control system based

on the identified model. and (3) experimental

verification of the control system. In this chapter,
a FEM model of the test structureis derived in
terms of mass, damping, and stiffness, and a
comparison of the experimental and analytical
transfer functions is performed to verify the
accuracy of the obtained model. This FEM model
will serve as a basis model for the robustness
verification of the proposed probabilistic control
algorithm against the modeling uncertainties in the
subsequent sections.

In this study, system identification for the fest
structure and control system was performed in the
frequency-domain, The system inputs were the
accelerations of the AMD, and the system outputs

were the absolute accelerations of three floors. The

steps involved in the system identification
procedure included (1) obtaining a complex
frequencyresponse function (FRF) wusing the

system inputs and outputs: (2) estimating the
system Markov parameters from the FRF: (3)
minimum realization of the system obtaining a
state-space model from the Markov parameters:
and (4) obtaining the modal properties from the
state-space model and constructing the analytical
FEM model.

3.1 Complex Frequency Response Function
Consider a discrete multivariable linear system
described by

z(k+1) = A z(k) + B ju(k)
y(k) =C 4z(k) + D ju(k)

(1-a)
(1-b)

where 2z(k) is an (mx1) state vector, y(&) is
an (mx1) system output vector, and #(k) is an
(7x1) system input vector for & = 0, -, 1-1
with A4 Ba Cua and Dy being system matrices
with appropriate dimensions. The
and y(£)
follows assuming zero initial conditions.”

relationship

between ult) can be expressed as

)= Y Yu(k-1)
=0
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o) is the system Markov
the
(3)

where Yi{r=1 -
parameters to be
Fourier transform (DFT) to

determined. Applying
discrete Eq.
yields

Y(k)=G(z,)U (k) (3)
where Y( k) and U( %) are Fourier transforms of

y( k) and u( &), respectively, and

-2,
G(z)= ZY,e !
=0
omk
_

=€ !

in which the matrix G( %) is the complex FRF
for the frequency at 2 mk/I 2 is the z-transform
variable, and Jj=v-1. For multi-input multi-
output (MIMO) systems. in general, the complex
FRF is obtained from N experiments or N data
segments of a long experiment record. For N
input-output relationships, post-multiplying both
sides of Eq. (4) by U(k). which is the complex

conjugate transpose of U( k), produces

N N
ZY(i)(k)U(i)*(k) =G(Zk )ZU(i)(k)U(i)*(k)

il i=l
Uk and YOk), respectively, re-
u( k),

and output sequence, y(k), for i-th data (7 =
1. -, N). Then, the complex FRF is calculated as

where

present the DFTs of the input sequence,

i=] i=1

N N -
G(z,) =ZY“)(k)U”)*(k){ZU“)(k)U“)*(k)] .

3.2 System Markov Parameters

To obtain the system Markov parameters, which
represent a pulse response of the system, we first
decompose the complex FRF using the left matrix

fraction method as'”

ok

G(z)=0(z) ' R(z) (7)
where matrix polynomials @(z) and R(z.) are

0(z)=1,+0iz; ++0,z,” (8)

R(z,)=R, +E]zk“+m+l_ipz,:p (9

assuming the orders of both polynomials to be p
and I, is an identity matrix of order m. Qi(7 =
1, -+, p) isan m x m real matrix and R (i =
1, ==+ p) is an mx 7 real matrix. Pre-multiplying
Eq. (7) by @(z) and rearranging terms of like
powers lead to

Yo=D, =K, (10
— T J—
8 =RT_§QiY"‘ for = 1, - p (11)
4 —
er_ggiYH for = ptl, +, (12)

3.3 Minimum Realization

A realization of the system iIs to obtain the
system matrices, A4 By and Cu which satisfy
the discrete equation of motion for the system,
from the Markov parameters, Yz (¢ = 1, -, o0),
presented in Egs. (10) to (12). Any system has
an infinite number of realizations which will
predict the identical

specific input. The minimum realization means to

response subjected to a

obtain a state-space model with the smalleststate-

space dimension among the infinite realizable
systems, which represent the same
this study, the
Realization ~ Algorithm  method

Correlation (ERA/DC) is applied to
system matrices from the Markov parameters.
ERA/DC least-square fit to the output

auto-correlationsand

input-output
relationship. In Eigensystem
with  Data

estimate the

Is a
cross-correlations  over a
defined number of lag values. Applying ERA/DC,

the realization, A,B, and €, of system matrices.
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Ad, Bd, and Cd are®

A=z "RIHWDS,Z,"” 1)

D /

B= [Efan,', I o, (14)
and

r 1/2

C=E,R,Z, (15)

where the superscript T denotes a pseudo-inverse,
E, = [I, 0,-0,]" with a null matrix O, of
order 7, and H( k) is the block correlation Henkel
matrix and is factorized using singular = value

decomposition for £ = 0 such that
H©)=R3S"

in which the columns of matrices R and S are
orthogonal, ie, R'R = I (= identity matrix) and
S8'S = I and X is a rectangular matrix defined

as
z 0
Z=| 7
0 0 (16)
with
Z =diag(o,,0,,*,0,) ‘ (17

where 0 is a (7 x 1) null vector and : (¢ = 1,

-, n) is monotonically decreasing constants.
Transforming the above discretized state-space

matrices into the continuous state-space form, we

obtain
7'.=Afz+Bcu (18)
y=Cz+D.u (19)

4. FEM Model

An n-degree-of-freedom (DOF) second order

system subjected to a control force u is given by
Mx +Cx+Kx =bu (20

where M, C, and K are, respectively, the mass,
damping, and stiffness matrices of size #nx %, and
x is the displacement response vector of size nx1,
and & is the control force influence matrix.
Applying modal transformation, Eq. (20) can be

expressed as

ﬁ+Ai)+Qt]=¢Tbu (21

where x = @, @ is the eigenvector satisfying

the following characteristic equation

K= MOSQ (22)
OTMO=1 (23)

and A and £, respectively, are

Q=0"K® =diag(w?>,i =1,...,n) (24)

ni’

A=0"CP=diag(2.0,,i=1,...,n) (95)

in which @y and &: are natural frequency and
damping ratio of ¢ th mode, respectively.

The acceleration responses of the structure in
Eq. (20) are
coordinates, 7, as

then calculated wusing modal

x =¢ij=—¢!)r]—¢Ai]+bu (26)

and the state-space equations in Egs. (18) and
(19) are transformed into the following complex
modal equations.

q=Aqq+Bqu 27)
y=qu+DCu (28)
in which z=Yg, B,=¥"'B. ad C,=C¥

where ¥ is the eigenvalue matrix that satisfies

the following characteristic equation of A,

420 /2L STESEH=ETU/A 143 A5 E, 20043
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AY=YA, (29)

and matrices A, B, and C,. and vector g are

A’] _ b_ql
2"1 bql
Aq = . Bq =!:
)‘n b‘l'l
Ay by
F 7
€41 q
_T _
, Cql q
Cq = : q=
T
4 q
I T (30)
chn_ qn
where 4 =0,+j®, and % is the complex

conjugate of A; The variable ¢ in Eq. (30) in
coordinate system possesses no
implication. By applying the common
(CBSD
method of Alvin et al'"’, the variable ¢ can be

the complex
physical
basis-normalized structural identification
transformed info the modal displacement velocity
model, which has the physical meaning. The
following transformation is used for the coordinate

transformation in CBSL

ol
q; n; (31)

where the transformation matrix Vi is given as

Jj | oi—jo; -lf-0,-re; 1
V,=d, — . 2 2
2(0:‘ -0, —jo 1 |j-0 i~ O0;-r[(32)

in which r=Im(;)/Re(b;) d; may be selected
arbitrarily but the corresponding mode shapes are
not mass-normalized ones. If a sensor is located at
the same place as the actuator, mode shapes can
be converted into mass-normalized ones by setting

d; as follows,
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d = 2Re(b,)
" "V (o, +rw)Re(c;) - (1o, - @) Im(c;) (33)

If transforming Eq. (28) applying the

transformation matrix Vi in Eq. (32) results in
y=Hmn+Hn+D.u (34)

then, mode shapes can be obtained from Egs. (26)
and (34) such that

®=-H,Q" (3)

Using the mode shapes obtained in Eq. (35),
the following mass matrix can be calculated.

M=(00") ! (36)

and the stiffness mafrix of the structure, K, is
obtained as"

K= MO0Q0™M (37)
Similarly, the damping matrix, C, isexpressed as

C=MoAD™™M (38)

5. Identification Result

Twenty Gaussian white noises (N= 20) were
used ‘as the input for AMD, and the corresponding
accelerations of each floors are measured. Then,
the complex FRF for the input. the force induced
by the AMD, was obtained and subsequently, the
Markov parameters and system matrices were
estimated. System matrices and corresponding
analytical model are listed in Appendix 1.

The FRFs of the analytically estimated model
are compared with the experimentally obtained
ones in Figs, 3, 4 and 5 show the FRFs from the
input force of AMD to the absolute acceleration of
the first, second, and third floors, respectively.
Note that the experimentally obtained FRFs in the

figures are the averaged ones for twenty inputs.
In Fig. 3, 4 and 5, it is observed that magnitudes
as well as phase of experimentally obtained FRFs
match well with those of analytically obtained
FRFs. Also, the FRFE obtained by the third floor
acceleration agrees most exactly with the
experimental results, This is because the input
is directly exerted to the third floor.

However, since the other FRFs provide almost

force

exact results in the frequency range which include
the natural frequencies of the structure, they can
be used without much error as system model. The
natural frequencies and damping ratios for the
first three modes are, respectively, 2.67, 7.78 and
1168 Hz and 067, 2.08 and 3.28 %.

6. Conclusion
In this paper, an experimental verification of

system identification technique for constructing
finite element model is conducted for a three-story
test structure equipped with an active mass driver
(AMD). Twenty Gaussian white noises were used
as the input for AMD, and the corresponding
accelerations of each floors are measured. Then,
the complex FRF for the input, the force induced
by the AMD, was obtained and subsequently, the
Markov parameters and system matrices were
estimated. The magnitudes as well as phase of
experimentally obtained FRFs match well with

those of analytically obtained FRFs.
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Appendix |

Identified system matrices and the corresponding
FEM model properties

A =

[-0066 -18416 0087 0035 . 0000 —0.027]
15281 -0.161 -0004 0741 -0105 -0.137
-0.031 0216 -0716 -50035 -0073 -0.025
0078 -0.182 47773 -1318 0070 -0015
—-0.065 -0.127 0538 -1242 -2072 -74159
_—0.068 -0.027 0.758 0652 72544 -2741 ]

B.=

(0147 —0.111 0650 -0364 -1.182 0928

C.=

-0463 —0594 0612 0612 0234 0103
—-0.845 -1.086 0335 0356 -0295 —0.154
-1.098 -1.393 -0432 —-0375 0092 0.046

D.= [0.000 0.001 0.028]

29474 -1.892 0.317
M,= [-1.892 26302 -0.467 ke
0.317 -0467 35.019
[ 88.533 -48.837 2954
C=|-48837 84950 -40.885|\ .,
| 2954 —40.885 38.162
[100.863 -53.634 2.122
K=|-53634 95698 —46.066| n/m
| 2122 -46.066 44.553
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