워크플로우 소속성 네트워크는 워크플로우 기반 조직의 수행자와 업무 사이의 연관관계를 나타내는 소셜 네트워크의 한 형태이며, 이를 기반으로 연결 중심도, 근접 중심도, 사이 중심도, 위세 중심도 등과 같은 다양한 분석 기법들이 제안되었다. 특히, 전사적 워크플로우 모델을 기반으로 하는 소속성 네트워크의 근접 중심도 분석은 워크플로우 소속성 네트워크의 규모가 증가함에 따라, 중심도 및 랭킹 계산의 시간 복잡도 문제점을 가진다는 것을 발견하였다. 본 논문에서는 근접 중심도 분석의 시간 복잡도 문제를 개선하기 위해, 근사치 추정 방법을 이용한 워크플로우 기반 소속성 네트워크의 추정 근접 중심도 기반 랭킹 알고리즘을 제안한다. 노드의 타입이 수행자인, 워크플로우 예제 모델을 추정 근접 중심도 기반 랭킹 알고리즘에 적용한 성능 분석을 실시하였다. 수행 결과, 네트워크 규모 관점에서의 정확도는 평균적으로 47.5% 향상되었고, 샘플 모집단 비율 관점에서는 평균적으로 9.44%정도의 향상된 수치를 보였다. 또한, 추정 근접 중심도 랭킹 알고리즘의 평균 계산 시간은 네트워크의 노드 수가 2400개, 샘플 모집단의 비율이 30%일 때, 기존 근접 중심도 랭킹 알고리즘의 평균 계산 시간보다 82.40%의 높은 성능을 보였다.
본 논문에서는 워크플로우 기반 인적 자원의 소속성 분석을 위한 업무-수행자 이분 행렬 생성 알고리즘을 제안한다. 워크플로우 기반 인적 자원은 워크플로우 관리 시스템에 의해 관리되는 조직의 모든 수행자들을 말하며, 워크플로우 모델의 실행 과정에서 특정 업무 집합에 참여하게 된다. 이러한 워크플로우 모델에 정의된 수행자들과 업무들과의 소속성을 나타내는 소셜 네트워크를 업무-수행자 소속성 네트워크라 정의하였으며, 본 논문에서 제안하는 알고리즘은 워크플로우 모델로부터 발견된 업무-수행자 소속성 네트워크 모델(APANM)에 대한 이분 행렬을 생성하기 위한 알고리즘이다. 결론적으로, 알고리즘에 의해 생성된 업무-수행자 이분 행렬은 중심성(centrality), 밀집도(density), 상관 관계(correlation)와 같은 다양한 소셜 네트워크 관련 속성들을 분석하는데 적용될 수 있으며, 이를 통해 워크플로우 기반 인적 자원의 소속성에 대한 유용한 지식을 획득할 수 있다.
본 논문에서는 BPM기반 인적 자원 소속성 분석을 위한 역할-수행자 이분 행렬 생성 알고리즘을 제안한다. 제안된 알고리즘은 정보제어넷 기반의 비즈니스 프로세스 모델로부터 역할-수행자 소속 관계를 추출하는 단계와 이로부터 역할-수행자 이분 행렬을 생성하는 단계로 구성된다. 결론적으로 생성된 행렬은 역할-수행자 소속성 네트워킹 지식을 발견하기 위한 데이터 구조로서 활용될 뿐 아니라 소셜 네트워크 분석 기법을 적용하여 BPM 기반 인적 자원 소속성 분석 결과를 도출할 수 있다.
친밀한 친구 관계를 맺고 소속감을 느끼는 것은 청소년의 심리·사회적 발달 및 적응에 긍정적인 영향을 미친다. 소속감 지향성은 소속감을 추구하는 동기로, 성장 지향성과 결핍감소 지향성으로 구분된다. 성장 지향성과 결핍감소 지향성은 심리적 적응 및 대인관계 특성에 서로 다른 영향을 주는 것으로 알려져 있다. 본 연구의 목적은 청소년의 소속감 지향성이 심리적 적응과 친구 네트워크에 미치는 효과를 알아보는 것이다. 이를 위해 한 중학교의 2학년 전체 학생을 대상으로 학기 초와 학기 말에 검사를 실시했다. 친구 네트워크는 네트워크 수신 중심성 분석을 통해 측정했다. 다층 회귀모형을 사용한 분석 결과는 첫째, 학기 초의 외로움과 스트레스에 대한 성장 지향성의 효과는 학기 초 친구 네트워크 중심성을 분석 모형에 함께 투입해도 유의했으나, 결핍감소 지향성의 효과는 유의하지 않았다. 둘째, 성장 지향성은 학기 말의 친구 네트워크 중심성을 유의하게 예측했다. 이러한 효과는 학기 초 친구 네트워크 중심성과 학기 말 심리적 적응 수준을 분석 모형에 함께 투입해도 유의했다. 셋째, 학기 말의 심리적 적응에 미치는 학기 말의 친구 네트워크 중심성의 효과는 학기 초 및 학기 말의 심리적 적응을 모형에 함께 투입해도 유의했다. 본 연구는 단기-종단적 설계를 통해 소속감 지향성이 청소년의 학기 초와 학기 말의 심리적 적응과 친구 네트워크 수준에 미치는 효과를 경험적으로 밝혔다는 점에서 의의가 있다. 끝으로, 본 연구의 한계점 및 후속 연구를 위한 제언을 논의했다.
최근 학제간 연구에 대한 관심이 커지면서 자연스럽게 연구자들 간의 협력관계, 특히 학술적 협력관계에 대한 관심 역시 증가하고 있다. 이에 따라 공저 네트워크 자체의 속성에 대한 연구 뿐만 아니라 공저 분석 기법을 통해 특정 학문 분야의 지적 구조를 해석하려는 연구들이 꾸준히 진행되고 있다. 본 연구는 공저 네트워크 분석을 통해 국외 학제적 저널의 공저 현황과 소속기관 유형을 살펴보고 매개 중심성과 연결정도 중심성을 통해 학술지별 주요 소속기관과 저자들의 위치, 그리고 그들간의 협력 관계를 살펴보고자 하였다.
인간과 인간 사이에 컨텍스트의 역할이 중요한 것처럼 기계가 컨텍스트를 인식할 수 있는 능력을 갖추는 것은 중요하다. 특히 지능적인 서비스를 제공하기 위해서는 고수준 컨텍스트를 추출하는 것이 필요하고, 최근 베이지안 네트워크를 이용해 컨텍스트를 추출하려는 연구가 많이 있었다. 그러나 대부분은 단순한 컨텍스트를 추출하는 연구들이고, 상황이나 사용자에 따라 다른 특성을 보이는 경우에 대한 처리는 하지 못하고 있다. 본 논문은 퍼지 소속 함수를 통해 각 센서에서 오는 정보를 전 처리하고, 이를 베이지안 네트워크를 이용해 고수준 컨텍스트로 추출하는 방법을 제안한다. 특히 여러 개의 퍼지 노드가 있을 경우 퍼지 소속값의 곱을 사용하여 베이지안 추론에 적용하였다. 각 센서의 정보를 처리하는 퍼지 소속 함수는 사용자가 쉽게 설계할 수 있고, 컨텍스트 추출모듈과 별개로 설계가 가능하기 때문에 베이지안 네트워크의 유연하고 적응적인 특성을 유지하면서 개인화가 가능하다. 제안한 방법의 유용성을 보이기 위해 실제 세계의 문제를 모델링한 베이지안 네트워크의 예를 보이고 이를 분석한다.
비즈니스 프로세스 인텔리전스(BPI)는 지식의 발견 및 분석 분야의 새로운 기술로서, BPM 기반 조직에 관련된 지식을 발견하고 이를 분석하기 위한 기술들을 말한다. BPI를 통해, 프로세스 기반 조직의 지식을 제어, 모니터링, 예측, 최적화할 수 있게 되는데, 본 논문에서는 특정 비즈니스 프로세스 모델에 참여하는 수행자들과 업무들간의 소속 관계를 나타내는 BPM 업무-수행자 소속성 네트워크 지식에 초점을 맞춘다. 즉, 본 논문에서는 BPM 업무-수행자 소속성 네트워크 지식을 위한 통계 분석 기법을 제안하며, 이를 업무-수행자 대응 분석 기법이라 정의한다. 제안하는 대응 분석 기법의 과정은 이분 행렬을 생성하고, 이에 대한 대응 분석 결과를 가시화하는 과정으로 구성되며, 이를 통해 비즈니스 프로세스 모델 또는 비즈니스 프로세스 패키지에 소속되는 수행자 그룹과 업무 그룹간의 연관 관계를 분석할 수 있다. 결론적으로, 제안하는 업무-수행자 대응 분석 기법을 통해 BPM 기반 조직을 위한 비즈니스 프로세스 모델 또는 비즈니스 프로세스 패키지의 계획 및 설계 과정에서, 업무와 수행자간의 연관 관계를 고려하여, 인적 자원 할당의 효과성과 효율성을 제고할 것이라 기대된다.
본 연구는 내용분석과 네트워크 분석을 사용하여 국내 정보조직분야 지식구조를 조사하고자 하였다. 이를 위해 2000년부터 최근까지 정보조직분야 논문을 바탕으로 저자키워드, 초록, 저자, 저자소속기관을 추출하여 용어의 빈도를 측정하는 것은 물론 용어 간 연관관계를 분석하였다. 이를 위해 네트워크상에서 각 노드의 연결중심성, 근접중심성, 위세중심성을 산출하였다. 그 결과 정보조직 연구주제어는 좁고 복잡한 네트워크를 형성하고 있으며 주제어 사이에 직접적인 연결이 많이 이루어지고 있음을 알 수 있다. 목록과 분류는 여전히 정보조직의 중심축을 담당하고 있는 반면, 메타데이터, 온톨로지가 새로운 연구 분야로 부상하였다. 반면에 저자소속기관 및 저자는 넓은 네트워크를 형성하고 있었으며 협력이 활발하지 않았다.
본 연구는 사회 네트워크 분석을 활용하여 응용통계연구에 논문을 게재한 저자 간 공동 연구의 양상을 분석하였다. 2000년부터 2010년까지 총 664개의 논문을 대상으로 하였으며 네트워크 분석을 통해 공저자 네트워크의 중심을 구성하는 연구자를 찾아보았고 하위 네트워크 분석을 통해 연구 분야 및 공동연구 집단이 차별화되는 네트워크를 살펴보았다. 또한, 공저관계를 반응변수로 하고 소속집단을 설명변수로 하는 로지스틱 회귀분석을 수행하여 소속집단이 공동연구에 미치는 영향정도를 분석해 보았다.
본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.