• Title/Summary/Keyword: 소속도함수

Search Result 99, Processing Time 0.034 seconds

Design of Artificial Neural Networks for Fuzzy Control System (퍼지제어 시스템을 위한 인공신경망 설계)

  • Jang, Mun-Seok;Jang, Deok-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.626-633
    • /
    • 1995
  • It is vary hard to identify the fuzzy rules and tune the membership functions of the fuzzy inference in fuzzy systems modeling, We propose a fuzzy neural network model which can automatically identify the fuzzy rules and tune the membership functions of fuzzy inference simultaneously using artificial neural networks, and modify backpropagation algorithm for improving the convergence. The proposed method is verified by the simulation for a robot manipulator.

  • PDF

A Fuzzy Traffic Light Controller Adaptable to the Congestion of Traffic based on the Membership Function Modification Algorithm (소속함수 수정 알고리즘에 의한 혼잡상황에 적응하는 퍼지 교통 신호 제어기)

  • Choi, Wan-Kyoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.309-312
    • /
    • 2001
  • 본 연구에서는 상류부 교차로에서 발생하는 교차로 막힘 현상으로 인해 진행방향의 녹색시간의 손실이라는 장애가 발생하게되는 상황을 고려하기 위해 진행차선의 정체도를 도입하여 교통 혼잡상황에 적절히 대응할 수 있는 퍼지 교통신호 제어기를 제안한다. 먼저 입출력 공간을 균등 분할한 퍼지 교통신호 제어기를 구성하고, 소속함수 수정알고리즘에 의해 제어기를 수정한다. 실험을 통해 고정식 제어기, 균등 분할한 제어기와 수정된 제어기의 성능을 교차로 지체시간, 진입율과 통과율 면에서 비교하였다. 실험 결과는 수정된 제어기가 다른 제어기들에 비해 향상된 성능을 보여주었다.

  • PDF

A Study on Fuzzy Minutiae-Based Matching Method (퍼지를 이용한 지문 정합에 관한 연구)

  • Eom, Ki-Yol;Kang, Min-Koo;Hong, Da-Hye;Kim, Mun-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.359-361
    • /
    • 2008
  • This paper presents the fuzzy minutiae-based matching to improve the accuracy of the difference between template and imput fingerprint image. Minutiae-based matching method is the most well-known and widely used method for fingerprint matching. However, fingerprint pressure, dryness of the skin, skin disease, sweat, dirt, grease, and humidity in the air cause the noisy fingerprint images and the distortion is produced by users moving their fingers on the scanner surface. The input image may be rejected from the Fingerprint Recognition System, because the distorted fingerprint image is very different from the original image. Large tolerence boxes and fuzzy discriminant function is required to improve the accuracy.

  • PDF

Enhanced Fuzzy Binary Method using FCM Algorithm (FCM 알고리즘을 이용한 개선된 퍼지 이진화 방법)

  • Park, Ha-Sil;Song, Doo Heon;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.145-147
    • /
    • 2014
  • 대부분 이진화 알고리즘은 임계치를 결정하기 위해 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명암 차이가 큰 경우는 분할을 위해 양봉 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것으로도 양호한 임계치를 찾을 수 있지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 이 문제점을 개선하기 위해 삼각형 타입의 소속 함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화 하는 퍼지 이진화 방법이 제안되었다. 퍼지 이진화 방법은 소속 함수에 적용된 소속도를 a-cut에 적용하여 영상을 이진화 한다. 그러나 기존의 퍼지 이진화 방법은 a-cut값을 경험적으로 설정하기 때문에 다양한 영상을 이진화하는 과정에서 정보 손실이 많이 발생하는 문제점이 있다. 따라서 본 논문에서는 FCM 클러스터링 알고리즘을 이용하여 퍼지 이진화 방법의 a-cut값을 동적으로 설정하여 이진화하는 방법을 제안한다. 제안된 방법을 다양한 영상에 적용한 결과, 배경과 물체의 명암도 차이가 크게 나지 않는 영상의 경우에는 기존의 퍼지 이진화 방법보다 정보 손실이 적은 상태로 이진화되는 것을 확인하였다.

  • PDF

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.

Function Approximation for Reinforcement Learning using Fuzzy Clustering (퍼지 클러스터링을 이용한 강화학습의 함수근사)

  • Lee, Young-Ah;Jung, Kyoung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.587-592
    • /
    • 2003
  • Many real world control problems have continuous states and actions. When the state space is continuous, the reinforcement learning problems involve very large state space and suffer from memory and time for learning all individual state-action values. These problems need function approximators that reason action about new state from previously experienced states. We introduce Fuzzy Q-Map that is a function approximators for 1 - step Q-learning and is based on fuzzy clustering. Fuzzy Q-Map groups similar states and chooses an action and refers Q value according to membership degree. The centroid and Q value of winner cluster is updated using membership degree and TD(Temporal Difference) error. We applied Fuzzy Q-Map to the mountain car problem and acquired accelerated learning speed.

Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm (Possibilistic Fuzzy C-Means 클러스터링 알고리즘의 확장)

  • Heo, Gyeong-Yong;U, Yeong-Un;Kim, Gwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.423-426
    • /
    • 2007
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.

  • PDF

Self-Directed Learning Assessment System Using Fuzzy Logic (퍼지 논리를 이용한 자기 주도적 학습 및 평가 시스템)

  • Woo, Young-Woon;Kim, Kwang-Baek;Lee, Jong-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.815-825
    • /
    • 2007
  • The existing web-based self-directed learning systems are in short for the ability of learning skills assessment. Even worse, hey only give test scores as an indicate for test skills, which is also not a good measure for learning skills assessment and makes it difficult to assess learning skills objectively and to present clear assessment criterion. In this paper, we proposed an improved self-directed learning system using fuzzy logic, which can be controlled by learners themselves and helps to evaluate their on learning process. We also implemented the system on the written examination of Engineer Information Processing. The purposed system lust calculates membership functions of learning tine, learning frequency, testing time, and test score. Using them the final membership functions of learning and test skills are calculated and presented in a graphical, i.e. mon understandable, way to user. The purposed system helps learners to assess their achievement and to plan future schedule, and the survey result on the students used the system also supports that.

A Variant of Improved Robust Fuzzy PCA (잡음 민감성이 개선된 변형 퍼지 주성분 분석 기법)

  • Kim, Seong-Hoon;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.25-31
    • /
    • 2011
  • Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction. Although PCA has been applied in many areas successfully, it is sensitive to outliers due to the use of sum-square-error. Several variants of PCA have been proposed to resolve the noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA2, however, still can fall into a local optimum due to equal initial membership values for all data points. Another reason comes from the fact that RF-PCA2 is based on sum-square-error although fuzzy memberships are incorporated. In this paper, a variant of RF-PCA2 called RF-PCA3 is proposed. The proposed algorithm is based on the objective function of RF-PCA2. RF-PCA3 augments RF-PCA2 with the objective function of PCA and initial membership calculation using data distribution, which make RF-PCA3 to have more chance to converge on a better solution than that of RF-PCA2. RF-PCA3 outperforms RF-PCA2, which is demonstrated by experimental results.

A study on the development of a comprehensive waterfront activity index through complex monitoring in waterfront (하천 친수공간 복합모니터링을 통한 친수활동 종합지수 개발 연구)

  • Jung, Woo Suk;Gwon, Si Yun;Lee, Su Jeong;Kwon, Jae Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.490-490
    • /
    • 2022
  • 국내 대하천 및 중·소규모 하천의 홍수터 공간을 활용하여 체육시설 및 공원 등과 같은 친수 시설물을 조성하여 친수공간으로 활용하고 있으며, 시민들의 친수활동 빈도는 증가추세에 있다. 특히 하천 내에서 수상 레크레이션 활동 등과 같은 다양한 친수활동이 증가하고 있으며, 하천친수에 관한 정보 수요가 급증하고 있으나 체계적인 공급은 미흡한 수준이다. 따라서 본 연구에서는 친수공간 조성 및 유지관리에 대한 측면과 친수공간에서의 쾌적한 친수활동을 위한 정보제공 목적으로 하천 친수공간에서의 복합모니터링을 이용한 친수활동 종합지수를 산정 방법을 개발하고자 하였다. 센서 기반의 시계열 데이터 구축을 위해 하천 수질, 수리인자의 복합모니터링을 진행하였다. 수리인자(수위, 유속, 수면폭 등)와 수질인자(탁도, Chl-a, pH 등), 기상학적 인자(자외선 지수, 미세먼지 등) 등급에 따른 허용기준을 설정하여 각 등급 별로 수리인자의 값을 0~1 사이 값인 소속도로 변환하여 소속도의 합성 및 친수활동 등급을 결정하였다. 최종적으로 수리, 수질, 기상 인자별 소속도 함수 산정을 통한 퍼지합성 이론 기반의 친수활동 종합지수를 산정하였다. 그리고 친수활동 종합지수를 예보하기 위한 모델 적용을 위한 방향성을 정립하였다.

  • PDF