The Transactions of the Korea Information Processing Society
/
v.2
no.5
/
pp.626-633
/
1995
It is vary hard to identify the fuzzy rules and tune the membership functions of the fuzzy inference in fuzzy systems modeling, We propose a fuzzy neural network model which can automatically identify the fuzzy rules and tune the membership functions of fuzzy inference simultaneously using artificial neural networks, and modify backpropagation algorithm for improving the convergence. The proposed method is verified by the simulation for a robot manipulator.
Proceedings of the Korea Information Processing Society Conference
/
2001.04a
/
pp.309-312
/
2001
본 연구에서는 상류부 교차로에서 발생하는 교차로 막힘 현상으로 인해 진행방향의 녹색시간의 손실이라는 장애가 발생하게되는 상황을 고려하기 위해 진행차선의 정체도를 도입하여 교통 혼잡상황에 적절히 대응할 수 있는 퍼지 교통신호 제어기를 제안한다. 먼저 입출력 공간을 균등 분할한 퍼지 교통신호 제어기를 구성하고, 소속함수 수정알고리즘에 의해 제어기를 수정한다. 실험을 통해 고정식 제어기, 균등 분할한 제어기와 수정된 제어기의 성능을 교차로 지체시간, 진입율과 통과율 면에서 비교하였다. 실험 결과는 수정된 제어기가 다른 제어기들에 비해 향상된 성능을 보여주었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.359-361
/
2008
This paper presents the fuzzy minutiae-based matching to improve the accuracy of the difference between template and imput fingerprint image. Minutiae-based matching method is the most well-known and widely used method for fingerprint matching. However, fingerprint pressure, dryness of the skin, skin disease, sweat, dirt, grease, and humidity in the air cause the noisy fingerprint images and the distortion is produced by users moving their fingers on the scanner surface. The input image may be rejected from the Fingerprint Recognition System, because the distorted fingerprint image is very different from the original image. Large tolerence boxes and fuzzy discriminant function is required to improve the accuracy.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.145-147
/
2014
대부분 이진화 알고리즘은 임계치를 결정하기 위해 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명암 차이가 큰 경우는 분할을 위해 양봉 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것으로도 양호한 임계치를 찾을 수 있지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 이 문제점을 개선하기 위해 삼각형 타입의 소속 함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화 하는 퍼지 이진화 방법이 제안되었다. 퍼지 이진화 방법은 소속 함수에 적용된 소속도를 a-cut에 적용하여 영상을 이진화 한다. 그러나 기존의 퍼지 이진화 방법은 a-cut값을 경험적으로 설정하기 때문에 다양한 영상을 이진화하는 과정에서 정보 손실이 많이 발생하는 문제점이 있다. 따라서 본 논문에서는 FCM 클러스터링 알고리즘을 이용하여 퍼지 이진화 방법의 a-cut값을 동적으로 설정하여 이진화하는 방법을 제안한다. 제안된 방법을 다양한 영상에 적용한 결과, 배경과 물체의 명암도 차이가 크게 나지 않는 영상의 경우에는 기존의 퍼지 이진화 방법보다 정보 손실이 적은 상태로 이진화되는 것을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.5
/
pp.599-604
/
2005
This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.
Many real world control problems have continuous states and actions. When the state space is continuous, the reinforcement learning problems involve very large state space and suffer from memory and time for learning all individual state-action values. These problems need function approximators that reason action about new state from previously experienced states. We introduce Fuzzy Q-Map that is a function approximators for 1 - step Q-learning and is based on fuzzy clustering. Fuzzy Q-Map groups similar states and chooses an action and refers Q value according to membership degree. The centroid and Q value of winner cluster is updated using membership degree and TD(Temporal Difference) error. We applied Fuzzy Q-Map to the mountain car problem and acquired accelerated learning speed.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.423-426
/
2007
클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.4
/
pp.815-825
/
2007
The existing web-based self-directed learning systems are in short for the ability of learning skills assessment. Even worse, hey only give test scores as an indicate for test skills, which is also not a good measure for learning skills assessment and makes it difficult to assess learning skills objectively and to present clear assessment criterion. In this paper, we proposed an improved self-directed learning system using fuzzy logic, which can be controlled by learners themselves and helps to evaluate their on learning process. We also implemented the system on the written examination of Engineer Information Processing. The purposed system lust calculates membership functions of learning tine, learning frequency, testing time, and test score. Using them the final membership functions of learning and test skills are calculated and presented in a graphical, i.e. mon understandable, way to user. The purposed system helps learners to assess their achievement and to plan future schedule, and the survey result on the students used the system also supports that.
Journal of the Korea Society of Computer and Information
/
v.16
no.2
/
pp.25-31
/
2011
Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction. Although PCA has been applied in many areas successfully, it is sensitive to outliers due to the use of sum-square-error. Several variants of PCA have been proposed to resolve the noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA2, however, still can fall into a local optimum due to equal initial membership values for all data points. Another reason comes from the fact that RF-PCA2 is based on sum-square-error although fuzzy memberships are incorporated. In this paper, a variant of RF-PCA2 called RF-PCA3 is proposed. The proposed algorithm is based on the objective function of RF-PCA2. RF-PCA3 augments RF-PCA2 with the objective function of PCA and initial membership calculation using data distribution, which make RF-PCA3 to have more chance to converge on a better solution than that of RF-PCA2. RF-PCA3 outperforms RF-PCA2, which is demonstrated by experimental results.
Jung, Woo Suk;Gwon, Si Yun;Lee, Su Jeong;Kwon, Jae Hyun
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.490-490
/
2022
국내 대하천 및 중·소규모 하천의 홍수터 공간을 활용하여 체육시설 및 공원 등과 같은 친수 시설물을 조성하여 친수공간으로 활용하고 있으며, 시민들의 친수활동 빈도는 증가추세에 있다. 특히 하천 내에서 수상 레크레이션 활동 등과 같은 다양한 친수활동이 증가하고 있으며, 하천친수에 관한 정보 수요가 급증하고 있으나 체계적인 공급은 미흡한 수준이다. 따라서 본 연구에서는 친수공간 조성 및 유지관리에 대한 측면과 친수공간에서의 쾌적한 친수활동을 위한 정보제공 목적으로 하천 친수공간에서의 복합모니터링을 이용한 친수활동 종합지수를 산정 방법을 개발하고자 하였다. 센서 기반의 시계열 데이터 구축을 위해 하천 수질, 수리인자의 복합모니터링을 진행하였다. 수리인자(수위, 유속, 수면폭 등)와 수질인자(탁도, Chl-a, pH 등), 기상학적 인자(자외선 지수, 미세먼지 등) 등급에 따른 허용기준을 설정하여 각 등급 별로 수리인자의 값을 0~1 사이 값인 소속도로 변환하여 소속도의 합성 및 친수활동 등급을 결정하였다. 최종적으로 수리, 수질, 기상 인자별 소속도 함수 산정을 통한 퍼지합성 이론 기반의 친수활동 종합지수를 산정하였다. 그리고 친수활동 종합지수를 예보하기 위한 모델 적용을 위한 방향성을 정립하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.