• Title/Summary/Keyword: 소셜 데이터

Search Result 985, Processing Time 0.026 seconds

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

Hierarchical Visualization of Cloud-Based Social Network Service Using Fuzzy (퍼지를 이용한 클라우드 기반의 소셜 네트워크 서비스 계층적 시각화)

  • Park, Sun;Kim, Yong-Il;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.501-511
    • /
    • 2013
  • Recently, the visualization method of social network service have been only focusing on presentation of visualizing network data, which the methods do not consider an efficient processing speed and computational complexity for increasing at the ratio of arithmetical of a big data regarding social networks. This paper proposes a cloud based on visualization method to visualize a user focused hierarchy relationship between user's nodes on social network. The proposed method can intuitionally understand the user's social relationship since the method uses fuzzy to represent a hierarchical relationship of user nodes of social network. It also can easily identify a key role relationship of users on social network. In addition, the method uses hadoop and hive based on cloud for distributed parallel processing of visualization algorithm, which it can expedite the big data of social network.

Success Factor and Failure Factor of Social Media in Korean Society: Based on the Word Analysis and the Network Analysis on Interview Data (한국사회에서 소셜 미디어의 성공과 실패 요인 분석: 인터뷰 데이터에 대한 어절분석·네트워크 분석을 중심으로)

  • Hong, Juhyun;Kim, Kyung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.74-85
    • /
    • 2019
  • This Study explores the reason why the social media like Cyworld, Iloveschool in Korea in the viewpoint if the layered model by interview. As a result the success factor in the viewpoint of layered model, user used social media for fulfilling the need for linking with other users and the social media offers the customized contents to user. Finally the social media dominated the market in advance. Facebook and Kakao talk are good examples of successful media. The failure factors are to care less about what other users want, to limit the expand of platform and not to copy with the change of the media environment. Iloveschool, Cyworld and Twitter are the examples of failure social media in Korean society. This study highlights the importance of the sensitivity of the change of environment. The expert mentioned the importance of 4th industrial revolution technology like AI, Big data and expected that new technology will emerge and the service will be developed by the change of user's taste.

Research on the New Consumer Market Trend by Social Big data Analysis -Focusing on the 'alone consumption' association- (소셜 빅데이터 분석에 의한 신 소비시장 트렌드 연구 - '나홀로 소비' 연관어를 중심으로 -)

  • Choo, Jin-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.367-376
    • /
    • 2020
  • According to recent statistics on new consumer market trends, 'alone consumption' is at the center. This study focuses on the social big data that attracts the public's opinions in that it is important for a certain social trend to comprehensively understand the various fields such as society, locality, culture, marketing, economics, and psychology that form the background for it. Therefore, we set up the linkage of 'solo consumption' and conducted research on new consumer market trends using Opinion Analisys. As a result of this trend analysis, representative keywords such as 'honbab', 'honsul' and 'honyoeng' were derived and analyzed the trend of new consumer market using this data. Alone consumption is an inevitable new consumption trend caused by demographic change after the global economic crisis. The importance as a trend reflecting this will be further strengthened. Trend analysis by social big data will help scientific and systematic business distribution strategies and planning to help make new and valuable decisions and decisions about new consumer markets.

A Study on Social Network of Library Information User (도서관 정보 수요자를 위한 소셜 네트워크 서비스 도입에 관한 연구)

  • Cho, Jane
    • Journal of Korean Library and Information Science Society
    • /
    • v.39 no.2
    • /
    • pp.169-186
    • /
    • 2008
  • Social Network has been known as friendship basis human relation service in online network. But a broad sense of Social Network can be explained as a mechanism which makes web evolve to information-ecosystem by human relation and network data which has been generated by the mass of people's cooperation and interchange. Social Network has been expanding their domain from friendship basis relation service to broad social relationship focus of matter of concern. It has been applied to diverse domain. Library community begins to take an interest in Social Network concept to apply user's interchange for information. This paper considers the concept of Social network and it's appliance to a library service. For the more, suggest basic element for vitalizing library user's Social network.

  • PDF

A Comparative Analysis of Cognitive Change about Big Data Using Social Media Data Analysis (소셜 미디어 데이터 분석을 활용한 빅데이터에 대한 인식 변화 비교 분석)

  • Yun, Youdong;Jo, Jaechoon;Hur, Yuna;Lim, Heuiseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.7
    • /
    • pp.371-378
    • /
    • 2017
  • Recently, with the spread of smart device and the introduction of web services, the data is rapidly increasing online, and it is utilized in various fields. In particular, the emergence of social media in the big data field has led to a rapid increase in the amount of unstructured data. In order to extract meaningful information from such unstructured data, interest in big data technology has increased in various fields. Big data is becoming a key resource in many areas. Big data's prospects for the future are positive, but concerns about data breaches and privacy are constantly being addressed. On this subject of big data, where positive and negative views coexist, the research of analyzing people's opinions currently lack. In this study, we compared the changes in peoples perception on big data based on unstructured data collected from the social media using a text mining. As a results, yearly keywords for domestic big data, declining positive opinions, and increasing negative opinions were observed. Based on these results, we could predict the flow of domestic big data.

A Meta Analysis of Innovation Diffusion Theory based e-Commerce Environment in Korea (국내 전자상거래 환경에서 혁신확산이론 선행연구에 관한 메타분석)

  • Nam, Soo-Tai;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.147-148
    • /
    • 2017
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 메타분석은 여러 실증연구의 정량적인 결과를 통합과 분석을 통해 전체 결과를 조망할 수 있는 기회를 제공하는 통계적 통합 방법이다. 전자상거래 연구에서 혁신확산에 영향을 미치는 요인으로 상대적 이점, 적합성, 복잡성, 시험 가능성, 관찰 가능성, 편리성 그리고 커뮤니케이션 채널을 외부 요인으로 설정된 연구를 대상으로 하고자 한다. 다음으로 국내 주요 학회지에 게재된 혁신확산이론 관련연구에서 어떠한 요인들을 사용하고 있고 또한 이러한 외부요인들이 종속변수에 어느 정도의 설명력을 가지는지를 메타분석을 통해 알아보고자 한다. 이러한 연구모델을 바탕으로 학문적 실무적 의의를 논의하고자 한다.

  • PDF

An Insight Study on Keyword of IoT Utilizing Big Data Analysis (빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.146-147
    • /
    • 2017
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.

  • PDF

The Correlation between Social Media and the Behaviors of the Supreme Court in Korea (소셜미디어와 대법원 판결의 상관 관계에 대한 분석)

  • Heo, Junhong;Seo, Yeeun;Lee, Seoyeong;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.22 no.3
    • /
    • pp.31-53
    • /
    • 2021
  • As a communication channel for individuals, social media is affecting various areas such as business, economy, politics, and society. One of the less-studied areas is the law. Therefore, this study collected various information from social media and analyzed its impacts on the legal decisions, especially the Supreme Court decisions in Korea. This study was conducted by compiling information from Internet news articles and public responses. We found that when the negative reactions from the public got higher, the trial duration until the supreme court making the final decisions became shorter. However, we were not able to find the significant relationship between social media reactions and dismissal of appeal nor annulment. Our study would contribute to the information systems and knowledge management research in a sense that the social analytics is applied to the area of legal decisions, instead of using conventional qualitative study methodology. Our study is also meaningful to the practitioners because that big data analytical business can be applied to the field of law by creating a new database for the emerging legal technology. Finally, law makers can think of a better way to standardize the legal decision process to minimize the reverse effects from social media.

Dynamic Seed Selection for Twitter Data Collection (트위터 데이터 수집을 위한 동적 시드 선택)

  • Lee, Hyoenchoel;Byun, Changhyun;Kim, Yanggon;Lee, Sang Ho
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2014
  • Analysis of social media such as Twitter can yield interesting perspectives to understanding human behavior, detecting hot issues, identifying influential people, or discovering a group and community. However, it is difficult to gather the data relevant to specific topics due to the main characteristics of social media data; data is large, noisy, and dynamic. This paper proposes a new algorithm that dynamically selects the seed nodes to efficiently collect tweets relevant to topics. The algorithm utilizes attributes of users to evaluate the user influence, and dynamically selects the seed nodes during the collection process. We evaluate the proposed algorithm with real tweet data, and get satisfactory performance results.