• 제목/요약/키워드: 소셜데이터 분석

Search Result 746, Processing Time 0.031 seconds

An Youth-related Issues Analysis System Using Social Media and Big-data Mining Techniques (소셜미디어와 빅 데이터 마이닝 기술을 이용한 청소년 관련문제 분석시스템)

  • Seo, Ji Ea;Kim, Chgan Gi;Seo, Jeong Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.93-94
    • /
    • 2015
  • 본 논문에서는 학교 교육환경에서 청소년들에게 발생 할 수 있는소 셜미디어의 역기능을 빅 데이터 처리를 통하여 분석 할 수 있는 방법을 제시하고, 특히 악성 댓글을 위주로 한 청소년들 간의 소셜미디어를 중심으로 빅 데이터의 마이닝 기술을 활용하여 대표적인 청소년 문제의 확산을 방지 할 수 있는 시스템 제안한다.

  • PDF

The Study on the Relationship between Disaster Signs and Sentimental of the Social Bigdata (소셜 빅데이터의 감성과 재난전조의 연관성에 관한 연구)

  • Bae, ByungGul;Lee, BoRam;Choi, SeonHwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.898-899
    • /
    • 2014
  • 여러 가지 예측하기 힘든 요소에 의해서 발생되는 재난을 미리 감지하는 것은 매우 어려운 일이다. 특히, 일부라도 예측할 수가 있는 자연재난이 아닌 복합재난의 경우, 측정될 수가 있는 정형적인 데이터가 존재하지 않기 때문에 재난을 예측하기 위한 데이터가 없는 것이 현실이다. 본 논문에서는 재난에 대한 전조를 감지하기 위해 소셜미디어에서 사람들이 직접 생성하는 소셜 빅데이터를 활용하여 재난과 관련된 메시지의 감성이 재난전조와 연관성이 있다는 것을 알아보고자 한다. 그래서 실제 사람들이 작성한 재난과 관련된 트윗을 수집하고 감성분석하여 재난발생 전후의 감성변화를 분석하였다.

Digtal Healthcare Research Trend based on Social Media Data (소셜미디어 데이터에 기반한 디지털 헬스케어 연구 동향)

  • Lee, Taekkyeun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.515-526
    • /
    • 2020
  • Digital healthcare is a combined area of medical field and IT and various information on digital healthcare is provided in social media. This study aims to find the research trend of digital healthcare by collecting and analyzing data related to digital healthcare through the social media. The data were collected from Naver and Daum's news and blogs from January 2008 to June 2019. Major keywords with high frequency were extracted and visualized with wordcloud and network analysis was used to analyze the relationship between major keywords. Research combining medical field and IT from 2008 to 2001, various convergence research based on medical field and IT from 2012 to 2015, convergence research that applied the 4th industrial revolution technologies such as big data, blockchain and AI were actively conducted from 2016 to June 2019.

An Insight Study on Keyword of IoT Utilizing Big Data Analysis (빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.146-147
    • /
    • 2017
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.

  • PDF

A Study on Evaluation of the Analyzing and Collecting Method on Social Big Data Information (소셜 빅데이터 정보 수집 및 분석방법 평가에 대한 연구)

  • Song, Eun-Jee;Kang, Min-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.853-854
    • /
    • 2014
  • 서비스 산업에 있어 효율적인 경영을 위해서는 시시각각으로 변하는 고객의 니즈를 파악하기 위해 그 어느 때 보다도 고객피드백이 필요한 시대이다. 기존의 설문조사를 이용한 방법은 자발적이고 즉각적인 고객의 의견을 수집하는데 한계가 있어 최근에는 서비스의 즉각적이고 사실적인 피드백을 얻기 위해서 조사에 대한 인지 없이 능동적이고 자발적으로 작성한 소셜미디어 상의 게시글을 수집하고 분석하는 방법을 이용하여 고객의 피드백을 파악하고 있다. 본 연구에서는 이러한 소셜 미디어상의 빅데이터 정보를 분석하는 기술의 적합성을 평가하는 방법을 제안한다. 수집 적합성 평가는 사전 설정된 수집규칙에 의해 수집된 수집데이터에 대한 검증방안을 수립하고 샘플링 조사를 수행하여 목표 수준의 정확도가 이루어지지 않을 경우 수집엔진에 대한 기능 보완 및 수집 주기 재설정 등 수집 규칙을 재설정하고 샘플조사 범위를 확대하여 평가하는 일련의 과정 반복을 통해 수집 정확도를 향상시킨다.

  • PDF

Visualization of Emotional Recruitment System Using Social Network Analysis (소셜 네트워크 분석을 이용한 감성 채용 시스템 시각화에 관한 연구)

  • Kim, Yong-Woo;Park, Seok-Cheon;Hong, Suk-Woo;Kim, Tae-Youb
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1046-1049
    • /
    • 2013
  • 본 연구는 소셜 네트워크 분석을 이용하여 정성적 데이터를 객관적인 데이터로 변환하는 과정에 대해 연구한다. 소셜 네트워크 데이터 분석을 위해 이미지 스케일을 통해 정서 및 심리 상태를 색으로 표현하고 채용에 있어 면접자들의 객관적이고 신뢰성 높은 자료를 시각화 하여 면접관들의 주관적인 잘못된 판단의 오류를 최소화 하도록 감성 채용 시스템 시각화를 제안 하였다.

Research on the New Consumer Market Trend by Social Big data Analysis -Focusing on the 'alone consumption' association- (소셜 빅데이터 분석에 의한 신 소비시장 트렌드 연구 - '나홀로 소비' 연관어를 중심으로 -)

  • Choo, Jin-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.367-376
    • /
    • 2020
  • According to recent statistics on new consumer market trends, 'alone consumption' is at the center. This study focuses on the social big data that attracts the public's opinions in that it is important for a certain social trend to comprehensively understand the various fields such as society, locality, culture, marketing, economics, and psychology that form the background for it. Therefore, we set up the linkage of 'solo consumption' and conducted research on new consumer market trends using Opinion Analisys. As a result of this trend analysis, representative keywords such as 'honbab', 'honsul' and 'honyoeng' were derived and analyzed the trend of new consumer market using this data. Alone consumption is an inevitable new consumption trend caused by demographic change after the global economic crisis. The importance as a trend reflecting this will be further strengthened. Trend analysis by social big data will help scientific and systematic business distribution strategies and planning to help make new and valuable decisions and decisions about new consumer markets.

A Meta Analysis of Innovation Diffusion Theory based on Behavioral Intention of Consumer (혁신확산이론 기반 소비자 행위의도에 관한 메타분석)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.140-141
    • /
    • 2017
  • Big data analysis, in the large amount of data stored as the data warehouse which it refers the process of discovering meaningful new correlations, patterns, trends and creating new values. Thus, Big data analysis is an effective analysis of various big data that exist all over the world such as social big data, machine to machine (M2M) sensor data, and corporate customer relationship management data. In the big data era, it has become more important to effectively analyze not only structured data that is well organized in the database, but also unstructured big data such as the internet, social network services, and explosively generated web documents, e-mails, and social data in mobile environments. By the way, a meta analysis refers to a statistical literature synthesis method from the quantitative results of many known empirical studies. We reviewed a total of 750 samples among 50 studies published on the topic related as IDT between 2000 and 2017 in Korea.

  • PDF

A Study on Keyword of the Android through Utilizing Big Data Analysis (빅 데이터를 활용한 안드로이드 키워드에 관한 연구)

  • Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.153-154
    • /
    • 2015
  • 최근 스마트 기기의 발달과 정보통신기술의 발전은 트위터, 페이스북, 인스타그램 등의 소셜네트워크(social network service) 상에서 유통되는 정보량이 폭발적 증가하고 있다. 이러한 변화는 데이터화가 가속화되고 있는 현대사회에서 데이터의 가치는 점점 높아질 것으로 예상되며, 데이터로부터 가치 있는 정보와 통찰력을 효과적으로 이끌어내는 기업이 경쟁력 확보를 위한 핵심가치가 되었다. 글로벌 리서치 기관들은 빅 데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅 데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅 데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 안드로이드와 애플 키워드 의미를 분석하고자 한다. 또한, 분석결과를 바탕으로 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

A Network Analysis of Information Exchange using Social Media in ICT Exhibition (ICT전시회에서 소셜 미디어를 활용한 정보교환 네트워크 분석)

  • Ha, Ki Mok;Moon, Hyun Sil;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.1-17
    • /
    • 2014
  • The proliferation of using social media and social networking services affects the lifestyles of people. These phenomena are useful to companies that wish to promote and advertise new products or services through these social media; these social media venues also come with large amounts of user data. However, studies that analyze the data of social media within the perspective of information exchanges are hard to find. Much of the previous research in this area is focused on measuring the performance of exhibitions using general statistical approaches and piecemeal measures. Therefore, in this study, we want to analyze the characteristics of information exchanges in social media by using Twitter data sets, which are relating to the Mobile World Congress (MWC). Using this methodology provides exhibition organizers and exhibitors to objectively estimate the effect of social media, and establish strategies with social media use. Through a user network analysis, we additionally found that social attributes are as important as the popular attribute regarding the sustainability of information exchanges. Consequently, this research provides a network analysis using the data derived from the use of social media to communicate information regarding the MWC exhibition, and reveals the significance of social attributes such as the degree and the betweenness centrality regarding the sustainability of information exchanges.