• Title/Summary/Keyword: 소성 회전각

Search Result 52, Processing Time 0.021 seconds

Experimental Study on Structural Behavior of Tapered Member with Non-compact Flange and Web (판폭두께비가 큰 변단면 휨부재의 구조성능에 관한 실험적 연구)

  • Chung, Kyung-Soo;Jeon, Bae-Ho;Park, Man-Woo;Do, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.357-365
    • /
    • 2011
  • The current trends in steel construction intend to use tapered sections to minimize as much as possible the use of excess material. This can be done by choosing the cross-sections to be as economical as possible, leaving the classical approach of using prismatic members. In addition, it is important to predict the buckling behavior of tapered member with large depth-to-thickness ratio in order to prevent the collapse of PEB system subjected to overloads. An experimental investigation of buckling behavior of tapered beam was presented. The primary test parameter was depth-to-thickness ratio and taper ratio. Using initial stiffness and load-carrying capacity proposed by current provision, the simple plastic hinge method using modified Yoda's model and finite element analysis, the prediction of a moment-rotation curve of linearly tapered member was presented. Moreover, comparisons between analytical and experimental data for moment-rotation curves were accomplished.

Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Reinforced Concrete Frame with Non-seismic Details (비내진 상세를 가진 1:12축소 10층 R.C.골조의 비선형 거동에 대한 실험과 해석의 상관성)

  • Lee, Han-Seon;Kang, Kyi-Yong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.267-277
    • /
    • 1999
  • The pushover analysis technique is now attracting the world-wide interest for the prediction of elastic and inelastic behavior of structures in the seismic evaluation of existing buildings. However, the reliability of this analysis technique has not been fully checked by the test results in the case of structures with nonseismic details. The objective of this study is to verify the correlation between the experimental and analytical responses of a 1:12 scale 10-story reinforced concrete frame with non-seismic details by using DRAIN-2DX program and the test results performed previously. It is concluded from this comparison that the overall responses such as the relations between story shear versus interstory drift and the local deformations such as plastic rotations can be predicted with quite high reliability.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.

Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses (잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가)

  • Lee, Soo-Keuon;Yang, Jae-Guen;Kang, Ji-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • Residual stress is defined as stress that already exists on a structural member from the effects of welding and plastic deformation before the application of loading. Due to such residual stress, welded H-section compression members under centroidal compression load can undergo buckling and failure for strength values smaller than the predicted buckling load and specified compressive strength. Therefore, this study was carried out to evaluate the effect of residual stress from welding on the determination of the buckling load and specified compressive strength of the H-section compression member according to the column length variation. A three-dimensional nonlinear finite element analysis was performed for the H-section compression member where the welded joint was fillet welded by applying heat inputs of 3.1kJ/mm and 3.6kJ/mm using the SAW welding method.

Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections (콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험)

  • Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.337-347
    • /
    • 2011
  • In this study, seismic resistance of concrete encased U-shaped steel beam-to-steel H-shaped column connections was evaluated. Three specimens of the beam-to-column connection were tested under cyclic loading. The composite beam was integrated with concrete slab using studs. Re-bars for negative moment were placed in the slab. The primary test parameter was the details of the connections, which are strengthening and weakening strategies for the beam end and the degree of composite action. The depth of the composite beams was 600mm including the slab thickness. The steel beam and the re-bars in the slab were weld-connected to the steel column. For the strengthening strategy, cover plates were weld-connected to the bottom and top flanges of the steel beam. For the weakening strategy, a void using styrofoam box was located inside the core concrete at the potential plastic hinge zone. The test results showed that the fully composite specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity of the beam exceeded 4% rotation angle, which is the requirement for the Special Moment Frame.

Analytical and Experimental Study of an Unstiffened Extended End-Plate Connection (반복하중을 받는 비보강 확장 단부판 접합부의 해석 및 실험적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.439-448
    • /
    • 2016
  • Extended end-plate connections(EEPC) are a type of connection applied in Pre-Engineered Building structures comprising beam-column connections of steel structures or tapered members. Extended end-plate connections(EEPC) show different behavioral characteristics owing to the influence of plate thickness, gauge distance of high strength bolt, diameter of high strength bolt frame, and the number of high strength bolts. In the USA and Europe, extended end-plate connections(EEPC) are applied in beam-column connections of steel structures in various forms; however, these are not widely applied in structures in Korea.This can be attributed to the fact that the proposal of design strength types for extended end-plate connections(EEPC), proposal of connection specifications, evaluation of seismic performance, and are not being performed appropriately. Therefore, the purpose of this study is to provide basic data for the domestic application of Unstiffened extended endplate connections. To realize this, nonlinear finite element analysis was conducted on a 12-mm thick Unstiffened extended endplate connections.

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Development of a Structural-Analysis Model for Blast-Resistant Design of Plant Facilities Subjected to Vapor-Cloud Explosion (증기운 폭발을 받는 플랜트 시설물의 내폭설계를 위한 구조 해석 모델 개발)

  • Bo-Young Choi;Seung-Hoon Lee;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.103-110
    • /
    • 2024
  • In this study, a nonlinear dynamic analysis of a frame and single member, which reflect the characteristics of a plant facility, is performed using the commercial MIDAS GEN program and the results are analyzed. The general structural members and material properties of the plant are considered. The Newmark average-acceleration numerical-analysis method is applied to a plastic hinge to study material nonlinearity. The blast load of a vapor-cloud explosion, a representative plant explosion, is calculated, and nonlinear dynamic analysis is conducted on a frame and single member. The observed dynamic behavior is organized according to the ratio of natural period to load duration, maximum displacement, ductility, and rotation angle. The conditions and range under which the frame functions as a single member are analyzed and derived. NSFF with a beam-column stiffness ratio of 0.5 and ductility of 2.0 or more can be simplified and analyzed as FFC, whereas NSPF with a beam-column stiffness ratio of 0.5 and ductility of 1.5 or more can be simplified and analyzed as FPC. The results of this study can serve as guidelines for the blast-resistant design of plant facilities.

Producing Technique and the Transition of Wan(Bowl) of Hanseong Baekje Period - Focus in Seoul·Gyeonggi Area - (한성백제기(漢城百濟期) 완(盌)의 제작기법(製作技法)과 그 변천(變遷) - 서울경기권 출토유물을 중심으로 -)

  • Han, Ji Sun
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.4
    • /
    • pp.86-111
    • /
    • 2011
  • Wan is a tableware in which boiled rice or soup, side dish are put, and it is a representative model which shows the development of personal tableware. From the establishing period of Hanseong Baekje, the form of wan which is Jung-do Style(中島式) Plain Pottery of previous period Proto-Three Kingdoms Period was succeeded to, but wan is produced and used as a wan baked in the kiln, which is far development of the producing technique including hardness and clay. By and large, the size of $0.3{\sim}0.4{\ell}$ was the majority and the production technique of wan which used carefully selected soft quality clay are largely confirmed to be two methods which are, first, basic method by which on a clay tablet on the rotating table, clay band is accumulated and moulding is finished, and second, the new method which had the same basic moulding as that of basic method but in the last stage takes wan off the rotating table and reverse it to trim the bottom and remove the angle of flat bottom. The former, basic production method is the classical production method since wan of Jung-do Style Plain Pottery and wan was produced and used for all periods of Hanseong Baekje. On the other hand, the latter is the production method obtained through form imitation of China made porcelain flowed into through interchange between Baekje and China, and through comparison with Chinese chronogram material it is estimated to have been produced and used after middle of 4th century. Therefore it can be known that the Baekje people's demand for China made articles was big and imitation pottery was produced and used with Baekje pottery. In addition, bowl with outward mouth are confirmed in multiple number in Lakrang(樂浪) pottery wan and it is assumed that wan was the form produced under the influence.