• Title/Summary/Keyword: 소성 실트

Search Result 40, Processing Time 0.025 seconds

Laboratorial Study for Mechanical Prosperities of Intermediate Soils (중간토의 역학적 특성에 관한 실험적 연구)

  • 박중배;전몽각
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • The purposes of this study are to investigate the mechanical prospeities of the inter mediate soils through consolidation tests and triaxial compression shear tests. The intermediate soils used in this study are artificial soils which are composed of sea clay, sand and it's crushed component. The relationship between plastic index and mechanical prosperties (permeability and compressibility) is investigated through series of consoli dation tests. Strain hardening phenomenon under shearing is explored based on several overconsideration ratios and strain rates in undrained shear tests. To make a comparative study difference of drain condition and strain rate, drain shear tests are performed with overconsolidation ratio.

  • PDF

The proposal on the new method for accurate to measure the plastic limits (정확한 소성한계 측정을 위한 새로운 실험법 제안)

  • Ko, Jae-Min;Lee, Byung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.68-79
    • /
    • 2018
  • An examination of the characteristics of the ground material in is very important in a ground investigation. Casagrande classified soil using the material properties of soils. The liquid-plastic limit test is useful for obtaining basic information of soil, and is an effective method for classifying silt and clay, as well as the material properties, such as shear strength, shrinkage, and expansion. Unlike the liquid limit test, the plasticity limit test is due to the ambiguity of the test procedure. Many geotechnical engineers and scholars have questioned the test results. In this study, a new plasticity limit method was used to compare with the thread rolling method with kaolinite, ilite and bentonite at a certain ratio, and samples were collected from the west coast of Korea. As a result of the comparison, the test value of the new test method showed high reproducibility because the error range of the test value of the conventional thread rolling test was only 10% but the error range of the new test values decreased to 2%. The difference in the slope of the existing plasticity test values was 0.1519 ~ 0.1925, and the results of the test were similar or coincided with each other. Aone - point method was proposed to make it easier to apply the new test method.

A Study on the Behaviour of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.89-97
    • /
    • 2008
  • A series of field tests were performed to investigate the behavior of jacket anchor and to evaluate the ultimate bond stress of jacket anchor. From twelve sets of field tests on the jacket anchor and general type ground anchor, it was observed that the pullout resistance of jacket anchor is significantly larger than that of the ground anchor and that the plastic deformation of jacket anchor is significantly smaller than that of general ground anchor at the same loading cycle. Especially in gravel layers, the jacket anchor provides more than 250% increase in ultimate resistance and more than 600% reduction in plastic deformation, compared with the general ground anchor. Finally, the relationship between the injection pressure and overburden pressure is proposed to determine the optimum injection pressure, based on additional field test results.

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.

Mechanical Characteristics of Dredged and Reclaimed Ground with Low Plasticity from Western Coastal Site (서해안 저소성 준설매립 지반의 역학적 특성)

  • Jeong, Sang Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • When carrying out design for soft ground improvement before reclamation of dredged soil, it is very important to appropriately evaluate design parameters such as compression index and undrained strength in order to estimate optimum construction cost. In this study, consolidation and strength parameters were estimated by the samples obtained from the similar reclaimed land. Water content and compression index of dredged soil reclaimed by hydraulic fill method were quite decreased in comparison with those of in-situ conditions at Incheon site. Relationships between compression index(Cc) and water content (wn), and between undrained strength (su) and water content (wn) for dredged soil were obtained by field vane test and oedometer test, respectively. Applicability of Schmertmann correction method (compression index) for low plasticity silty soil was discussed according to comparison with designed and measured settlements.

Undrained Behavior of Clay-Sand Mixtures under Triaxial Loading

  • Shin, Joon-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.71-81
    • /
    • 1999
  • A study on the undrained behavior of isotropically consolidated clay-sand mixtures was carried out using the automated triaxial testing apparatus. Overconsolidated ratio, effective mean pressure and clay content( up to 20% bentonite) were the factors varied in the experimental investigation. Undrained behavior(strength and pore water pressure generation during shear in triaxial loading) depends upon overconsolidation ratio, confining pressure and clay content. Significant changes in undrained compression characteristics occurred at around 20% of clay contents in the sand. The test results were analyzed and their behaviors were interpreted within the framework of plasticity constitutive model for clay-sand mixtures. Possible physical bases for the proposed forms are discussed. Validation of the applied model using the laboratory results is also given.

  • PDF

A Study on the Cement Mixture With Low Plasticity Silty Soil (저소성 실트질흙의 흙 시멘트에 관한 연구)

  • 김주범;박완순류기송김성교
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.2
    • /
    • pp.3778-3783
    • /
    • 1975
  • The objective of this study is to determine an appropriate cement of soil-cement in which silty soil of salty tidal flat with low plasticity was used. Physical, chemical and mechanical tests were conducted to find out the standard properties of the soil to be used. Various cement contents used in this test were 8%, 10%, 12%, and 14%, and the compressive strength was tested after 7 days and 28 days of standard curing in the above each cement content respectively. The results obtaind are summarized as follows. 1. As the cement content was increased from 8% to 14%, Maximum dry density (M.D.D.) and optimum moisture content (O.M.C.) were not changed remarkably. 2. Density of soil-cement was directly proportional to cement content and inversely proportional to water content. 3. OMC was generally decreased in proportion to the increase of cement content. 4. Compressive stranth was directly proportional to centent and inversely proportional to water content. 5. In freezing and thawing test, maximum loss of 10% in the total Weight was found on the 8% cement mixture. and This loss was rapidly decreased to 2% when the Cement content of the mixture was more than 10%.

  • PDF

Physical and Engineering Properties of Ash and Granite Soil (매립된 석탄 혼합회의 물리적 공학적 특성)

  • Kim, Dae-Hyeon;Kim, Sun-Hak;Kim, Ho-Chal;Goh, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.951-956
    • /
    • 2010
  • 본 연구에서는 $\bigcirc\bigcirc$화력발전소 회사장에 매립되고 있는 혼합회가 도로성토 및 철도노반 등 성토재로 사용될 수 있는가를 평가하기 위하여 물리적 및 역학적 특성을 평가하였다. 비중, 액소성 시험, 입도분석, XRD 시험, 강열감량시험, 실내투수시험을 통해 물리적 특성을 평가하였고 다짐시험, CBR 시험, 배수삼축압축시험을 실시하여 역학적 특성을 평가하였다. 두 가지 혼합회에 실험한 결과 비중은 2.181~2.189, 투수계수는 $1.32{\times}10^{-4}{\sim}1.89{\times}10^{-4}cm/sec$, 수정CBR은 19.5~21%, 배수마찰각은 $36.43{\sim}41.39^{\circ}$로 평가 되었다. 혼합회의 투수계수는 실트질 흙과 유사한 범위에 있으며 배수마찰각은 상대밀도가 큰 모래질 흙이 보일 수 있는 내부마찰각의 범위를 보였다. 본 연구에서 사용한 혼합회는 도로성토 및 철도노반 등 성토재로 사용할 수 있는 것으로 평가되었다.

  • PDF

Characteristics of the Smear Zone by Vertical Drain of Low Plasticity on Soft Ground (저소성 연약지반에서의 스미어 존 특성 평가)

  • Kang, Yun;Baek, Sungchul;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.27-33
    • /
    • 2007
  • The vertical drain method recently being used in Korea is one of the popular soft ground improvement methods, and it is divided into the sand drain method, the pack drain method, the paper drain method, and the PBD method according to the drainage. However, these methods generate the disturbed zone called the smear zone when the drainage is penetrated into the in-situ ground. The characteristics of the smear zone generated cause the problems that the coefficient of permeability decreases, and then the consolidation time in the design becomes longer than expected. Even though the coefficient of horizontal consolidation and the coefficient of permeability in the smear zone are very important design factors directly influencing the degree of consolidation, in the existing studies, these coefficients have been empirically derived by the coefficient of vertical consolidation and used for the design. However, in case that these coefficients derived by the coefficient of vertical consolidation are applied to the actual design, a loss of the duration of construction and a loss of economical efficiency can be happened because of the inaccuracy of the coefficient of horizontal consolidation and the coefficient of permeability. Hence, in this study, in order to understand such influence, the laboratory test was carried out so as to reasonably determine the coefficient of permeability and the coefficient of consolidation in diverse ground conditions. Then, the range of smear effect on clay and silt was estimated with monitoring data through the laboratory test.

  • PDF