• Title/Summary/Keyword: 소성환경

Search Result 395, Processing Time 0.025 seconds

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Development of Non-sintered Construction Materials for Resource Recycling of the Flotation Tailings (부선(浮選) 광미(鑛尾)의 순환자원화(循環資源化)를 위한 비소성(非燒成) 토건재료(土建材料) 개발(開發))

  • Kim, Joo-Ik;Jung, Moon-Young;Park, Jay-Hyun;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • This study was conducted to recycle flotation tailings as non-sintered construction materials considering the economic and eco-friendly treatments. The particle size distribution( median $220\;{\mu}m$) of flotation tailings from Soon-shin mine was confirmed to be larger than that(median $140\;{\mu}m$) of tailings from Sam-kwang mine. Thus we investigated the properties of non-sintered eco-brick producted with the tailings from Sam-kwang mine and non-sintered water permeable block producted with the tailings from Soon-shin mine. Compressive strength of non-sintered water permeable block which was made with less than 25 wt% of tailings from Soon-shin mine was met with products class(over 14.70 MPa) of water permeable concrete(EL 245) from KEITL. Meanwhile, the coefficient of its permeability wasn't met with the products class( over $1.0{\times}10^{-2}\;cm/sec$). The properties of non-sintered eco-brick with less than 40 wt% of tailings from Sam-kwang mine were satisfied with third class in sintered clay brick products standard(KS L 4201). The non-sintered eco-brick as a result of leaching test on heavy metals by KSLT was verified to be environmentally stabile.

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.

A Study on Recycling Plan for the Dehydrated Sludge of Water Treatment Plant (탈수 처리된 정수장 슬러지의 재활용 방안 연구)

  • Chung Youn-In;Chang Yong-Chai;Choi Byoung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.107-113
    • /
    • 2006
  • Water treatment plant sludge occurred in sedimentation and inverse wash process is generally disposed by ocean dumping or reclamation after dehydration processing using mechanical or natural dry method. Recently, ocean dumping of sludge is limited actually by London Convention. Physical, chemical, and geotechnical characteristics of water treatment plant sludge were analyzed by experiments. The possibilities for recycling of the dehydration sludges as materials for covering sanitary landfill were examined. Experiments performed with sludges mixed with general soil to improved the sludge properties are the hydrometer analysis, the liquid and plastic limit test, the specific gravity test, the compaction test, and the unconfined compression test. The value of ${\gamma}_{dmax}$ is increased and OMC(Optimum Moisture Content) is lessened with mixed sludge. The value of maximum compressive strength and friction angle are increased and the cohesion is decreased with mixed sludge. The ratio between sludge and soil in mixed sludge was 3:7 and the strength of mixed sludge showed $3.6kg/cm^2$. These results satisfy the regulation of U.S. E.P.A regarding materials for covering sanitary landfill.

  • PDF

A Study on the Performance Comparison of the Agents for Asphalt Pavement Recycling (재생 아스팔트 첨가제의 성능비교 연구)

  • Kim, In-Soo;Kang, Min-Soo;Suh, Young-Chan;Lee, Bong-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.82-88
    • /
    • 2012
  • The usage of recycling agent is the most effective way of enhancing the performance of recycled asphalt pavement. Generally, many countries accepted these recycling agents retarding the various types of cracks resulted in binder aging. Contrary to such general tendency, recycling agents are used as very small amount in domestic recycling plant. The main reason of this is relatively high price of recycling agent. Even though agent price is high, agent can be a effective and economical way of alternative in asphalt recycling. In this study, penetration and softning point test performed by using RTFO(Rolling Thin Film Oven) aged binder. And, PG(Performance Grade) at high temperature, fatigue and MSCR(Multi Stress Creep and Recovery) tests exercised. The oil type agent is worked well to retrieving target penetration number. In PG test, $G^*/sin{\delta}$ of agents identically showed high value and polymer type agent is good at recovery value.

  • PDF

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.

Effect of EAF dust on the formation of ultra lightweight aggregates by using bottom ash and dredged soil from coal power plant (인공경량골재의 EAF dust 첨가에 따른 초경량화에 관한 연구)

  • Choi, Yun-Jae;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • EAF dust from steel industry used as primary materials for the production of lightweight aggregates. Fe compounds in EAF dust plays an important role in the bloating reaction. This study was conducted to evaluate the feasibility of using bottom ash and dredged soil from coal power plant and EAF dust. The effect of different raw material compositions and sintering temperatures on the lightweight aggregate properties were evaluated. The characteristic of thermal bloating of bottom ash and dredged soil were mainly influenced by ferrous materials. The specific gravity of aggregate was decreased with the addition of EAF dust and kerosene was reduced sintering temperature on the bloating formation. Lightweight aggregate containing 10% EAF dust having apparent density under 1.0 g/$cm^3$ were produced at $1150{\sim}1200^{\circ}C$.

A Study on the Optimization of Recycled Aggregate Alkalinity Reducing Facility in the Field (순환골재 알카리 저감장치의 현장 최적화에 관한 연구)

  • Lee, Jong-Chan;Song, Tae-Hyeob;Lee, Sae-Hyun;Kim, Jong-Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.53-60
    • /
    • 2011
  • As Construction & Demolition(C&D) debris increase every year, a system has enforced for recycled aggregate made out of C&D debris, then recycled aggregate usage increased in construction field. But as environmental problem by alkalinity of recycled aggregate occurred, the study for lowering alkalinity of recycled aggregate is needed. In this study we made alkalinity reducing facility and installed in the C&D debris midterm-treat field. Then we certified effect of lowering alkalinity and quality of recycled aggregates before and after carbonation. As a result, the most effective carbonation condition is 30seconds in carbonation time, -50~100 kPa of reaction pressure with change of 3cycles. This condition made pH 9.33~9.8 of recycled aggregate possible. The quality of recycled aggregate after carbonation was better than before carbonation in terms of plasticity index, modified CBR, abrasion loss, sand equivalent, liquid limit, size distribution, density and water absorption.

  • PDF

Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings (원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.453-460
    • /
    • 2015
  • Since the Fukushima nuclear accident, several researchers are extensively studying the effect of torsion on the piping systems In nuclear power plants. Piping installations in power plants with a circumferential crack can be operated under combined loading conditions such as bending and torsion. ASME Code provides flaw evaluations for fully plastic fractures using limit load criteria for the structural integrity of the cracked pipes. According to the recent version of Code, combined loadings are provided only for the membrane and bending. Even though actual operating conditions have torsion loading, the methodology for evaluating torsion load is not established. This paper provides the results of limit load analyses by using finite element models for circumferentially cracked pipes under pure bending, pure torsion, and combined bending and torsion with tension. Theoretical limit load solutions based on net-section fully plastic criteria are suggested and verified with the results of finite element analyses.